The Hubble PanCET program: an extensive search for metallic ions in the exosphere of GJ 436 b

Context. The quiet M2.5 star GJ 436 hosts a warm Neptune that displays an extended atmosphere that dwarfs its own host star. Predictions of atmospheric escape in such planets state that H atoms escape from the upper atmosphere in a collisional regime and that the flow can drag heavier atoms to the upper atmosphere. It is unclear, however, what astrophysical mechanisms drive the process. Aims. Our objective is to leverage the extensive coverage of observations of the far-ultraviolet (FUV) spectrum of GJ 436 obtained with the Cosmic Origins Spectrograph (COS) to search for signals of metallic ions in the upper atmosphere of GJ 436 b, as well as study the activity-induced variability of the star. Methods. We analyzed flux time-series of species present in the FUV spectrum of GJ 436 and successfully performed geocoronal contamination removal in the COS Lyman-α profiles obtained near the Earth’s night-side. Results. GJ 436 displays flaring events with a rate of ~10 d−1. There is evidence for a possibly long-lived active region or longitude that modulates the FUV metallic lines of the star with amplitudes up to 20%. Despite the strong geocoronal contamination in the COS spectra, we detected in-transit excess absorption signals of ~50 and ~30% in the blue and red wings, respectively, of the Lyman-α line. We rule out a wide range of excess absorption levels in the metallic lines of the star during transit. Conclusions. The large atmospheric loss of GJ 436 b observed in Lyman-α transmission spectra is stable over the timescale of a few years, and the red wing signal supports the presence of a variable hydrogen absorption source besides the stable exosphere. The previously claimed in-transit absorption in the Si III line is likely an artifact resulting from the stellar magnetic cycle. The non-detection of metallic ions in absorption could indicate that the escape is not hydrodynamic or that the atmospheric mixing is not efficient in dragging metals high enough for sublimation to produce a detectable escape rate of ions to the exosphere.

[1]  J. Davila,et al.  Analysis of a Solar Active Region Extreme-Ultraviolet Spectrum from SERTS-97 , 2000 .

[2]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[3]  Kevin France,et al.  The Cosmic Origins Spectrograph , 1998 .

[4]  Alain Lecavelier des Etangs,et al.  An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b , 2016, 1605.07973.

[5]  Alain Lecavelier des Etangs,et al.  3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions , 2013, 1308.0561.

[6]  T. Matsakos,et al.  Classification of magnetized star--planet interactions: bow shocks, tails, and inspiraling flows , 2015, 1503.03551.

[7]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[8]  Debra A. Fischer,et al.  A Neptune-Mass Planet Orbiting the Nearby M Dwarf GJ 436 , 2004 .

[9]  B. Fegley,et al.  ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON , 2010, 1001.3639.

[10]  D. Queloz,et al.  A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b , 2014, 1409.4038.

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  H. Lichtenegger,et al.  Atmospheric and water loss from early Venus , 2006 .

[13]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[14]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[15]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[16]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[17]  Ignasi Ribas,et al.  Loss of water from Mars: Implications for the oxidation of the soil , 2003 .

[18]  Tsevi Mazeh,et al.  Dearth of short-period Neptunian exoplanets - a desert in period-mass and period-radius planes , 2016, 1602.07843.

[19]  Lee D. Feinberg,et al.  The Space Telescope Imaging Spectrograph Design , 1998 .

[20]  G. T'oth,et al.  The Dehydration of Water Worlds via Atmospheric Losses , 2017, 1709.01219.

[21]  Alain Lecavelier des Etangs,et al.  Radiative braking in the extended exosphere of GJ436b , 2015, 1508.06634.

[22]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[23]  E. Avrett,et al.  Models of the Solar Chromosphere and Transition Region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen , 2008 .

[24]  P. Schneider,et al.  The MUSCLES Treasury Survey. IV. Scaling Relations for Ultraviolet, Ca ii K, and Energetic Particle Fluxes from M Dwarfs , 2017, 1705.04361.

[25]  Lotfi Ben-Jaffel,et al.  Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b , 2013, 1303.4232.

[26]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[27]  G. H'ebrard,et al.  First Detection of Hydrogen in the \beta\ Pictoris Gas Disk , 2016, 1612.00848.

[28]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[29]  A. Cameron,et al.  A Kepler study of starspot lifetimes with respect to light-curve amplitude and spectral type , 2017, 1707.08583.

[30]  F.Pepe,et al.  High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain , 2018, 1803.10783.

[31]  K. France,et al.  Ultraviolet C ii and Si iii Transit Spectroscopy and Modeling of the Evaporating Atmosphere of GJ436b , 2016, 1612.08962.

[32]  Robert T. Zellem,et al.  Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits , 2016, 1603.02587.

[33]  X. Fang,et al.  The Flaring Activity of M Dwarfs in the Kepler Field , 2017 .

[34]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[35]  D. Ehrenreich,et al.  Hubble PanCET: an isothermal day-side atmosphere for the bloated gas-giant HAT-P-32Ab , 2017, 1711.00859.

[36]  Gregory W. Henry Techniques for Automated High-Precision Photometry of Sun-like Stars , 1999 .

[37]  L.A.Buchhave,et al.  Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b , 2018, 1812.05119.

[38]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[39]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[40]  M. Miesch,et al.  A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS , 2013, 1305.1904.

[41]  A. Strugarek ASSESSING MAGNETIC TORQUES AND ENERGY FLUXES IN CLOSE-IN STAR–PLANET SYSTEMS , 2016, 1610.05705.

[42]  S. Berdyugina,et al.  Active longitudes in sunspot activity: Century scale persistence , 2003 .

[43]  J. Linsky,et al.  ULTRAVIOLET SPECTROSCOPY OF RAPIDLY ROTATING SOLAR-MASS STARS: EMISSION-LINE REDSHIFTS AS A TEST OF THE SOLAR–STELLAR CONNECTION , 2012, 1205.6498.

[44]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[45]  Arthur H. Vaughan,et al.  FLUX MEASUREMENTS OF CA II AND K EMISSION. , 1978 .

[46]  P. Lavvas,et al.  CHARACTERIZING THE THERMOSPHERE OF HD209458b WITH UV TRANSIT OBSERVATIONS , 2010, 1004.1396.

[47]  Astrophysics,et al.  STELLAR ACTIVITY AND ITS IMPLICATIONS FOR EXOPLANET DETECTION ON GJ 176 , 2015, 1501.02807.

[48]  A. Cameron Eclipse mapping of late-type close binary stars , 1997 .

[49]  Alain Lecavelier des Etangs,et al.  Atmospheric escape from HD 189733b observed in H I Lyman-α: detailed analysis of HST/STIS September 2011 observations , 2013, 1301.6030.

[50]  H. De Sterck,et al.  Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres , 2005 .

[51]  Jonathan J. Fortney,et al.  HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND , 2012, 1205.0010.

[52]  R. Paul Butler,et al.  Radial Velocities for 889 Late-Type Stars , 2001, astro-ph/0112477.

[53]  V. Shematovich,et al.  Survival of a planet in short-period Neptunian desert under effect of photoevaporation , 2018, 1803.04278.

[54]  L. Ben-Jaffel Spectral, Spatial, and Time Properties of the Hydrogen Nebula around Exoplanet HD 209458b , 2008, 0807.3796.

[55]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[56]  T. Evans,et al.  The HST PanCET Program: Hints of Na i and Evidence of a Cloudy Atmosphere for the Inflated Hot Jupiter WASP-52b , 2018, The Astronomical Journal.

[57]  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres* , 2005, astro-ph/0503372.

[58]  A. Muñoz,et al.  Physical and chemical aeronomy of HD 209458b , 2007 .

[59]  David Ehrenreich,et al.  Mass-loss rates for transiting exoplanets , 2011, 1103.0011.

[60]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[61]  J. Sanz-Forcada,et al.  XUV-driven mass loss from extrasolar giant planets orbiting active stars , 2014, 1412.3380.

[62]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[63]  Kevin France,et al.  The MUSCLES Treasury Survey. V. FUV Flares on Active and Inactive M Dwarfs , 2018, The Astrophysical Journal.

[64]  M. Mallonn,et al.  GJ 1214: Rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum , 2018, Astronomy & Astrophysics.

[65]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[66]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[67]  E. M. Reeves,et al.  The extreme-ultraviolet spectrum of a solar active region. , 1973 .

[68]  R. Rebolo,et al.  Magnetic cycles and rotation periods of late-type stars from photometric time series , 2016, 1607.03049.

[69]  H. Beust,et al.  Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star , 2017, Nature.

[70]  P. J. Wheatley,et al.  Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b , 2012, 1206.6274.

[71]  Xavier Bonfils,et al.  Hint of a transiting extended atmosphere on 55 Cancri b , 2012, 1210.0531.

[72]  J. Barstow,et al.  HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b , 2017, 1701.00843.

[73]  Kevin France,et al.  LYα TRANSIT SPECTROSCOPY AND THE NEUTRAL HYDROGEN TAIL OF THE HOT NEPTUNE GJ 436b , 2014, 1403.6834.

[74]  R. Rebolo,et al.  Rotation periods of late-type dwarf stars from time series high-resolution spectroscopy of chromospheric indicators , 2015, 1506.08039.

[75]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[76]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[77]  R. P. Butler,et al.  The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey , 2017, 1702.03571.

[78]  Kevin France,et al.  THE MUSCLES TREASURY SURVEY. II. INTRINSIC LYα AND EXTREME ULTRAVIOLET SPECTRA OF K AND M DWARFS WITH EXOPLANETS , 2016, 1604.01032.

[79]  L. Ben-Jaffel,et al.  RE-VISIT OF HST FUV OBSERVATIONS OF THE HOT-JUPITER SYSTEM HD 209458: NO Si iii DETECTION AND THE NEED FOR COS TRANSIT OBSERVATIONS , 2015, 1503.01621.

[80]  T. Davis,et al.  Evidence for a lost population of close-in exoplanets , 2009, 0903.1782.

[81]  J. Bean,et al.  A HUBBLE SPACE TELESCOPE SEARCH FOR A SUB-EARTH-SIZED EXOPLANET IN THE GJ 436 SYSTEM , 2014, 1410.0002.

[82]  G. Montagnier,et al.  Dynamical evolution of the Gliese 436 planetary system - Kozai migration as a potential source for Gliese 436b's eccentricity , 2012, 1208.0237.

[83]  Drake Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2014, Nature.

[84]  G. Hebrard,et al.  Evaporation of the planet HD 189733b observed in H I Lyman-α , 2010, 1003.2206.

[85]  G. H'ebrard,et al.  New observations of the extended hydrogen exosphere of the extrasolar planet HD 209458b , 2008, 0803.1831.

[86]  L. Kitchatinov,et al.  Active longitudes of the sun: The rotation period and statistical significance , 2005 .

[87]  T. Barman,et al.  An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b , 2018, 1801.00412.

[88]  G. Hussain,et al.  Recurrent star-spot activity and differential rotation in KIC 11560447 , 2017, 1711.08949.

[89]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[90]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[91]  A. D. Etangs,et al.  A diagram to determine the evaporation status of extrasolar planets , 2006, astro-ph/0609744.

[92]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .

[93]  L. Kiss,et al.  A SHORT-PERIOD CENSOR OF SUB-JUPITER MASS EXOPLANETS WITH LOW DENSITY , 2010, 1012.4791.