Design and Implementation of a Sliding Mode Controller Using a Gaussian Radial Basis Function Neural Network Estimator for a Synchronous Reluctance Motor Speed Drive

Abstract This article presents a sliding mode control using a Gaussian radial basis function neural network speed control design for robust stabilization and disturbance rejection of the synchronous reluctance motor. In the conventional sliding mode control design, it is assumed that the upper boundary of parameter variations and external disturbances is known and the sign function is used. This causes high-frequency chattering and high gain. A new sliding mode controller using a Gaussian radial basis function neural network estimator is proposed for the synchronous reluctance motor. The proposed method utilizes the Lyapunov function candidate to guarantee convergence and to track the speed command of the synchronous reluctance motor asymptotically. The estimator of parameter variations and external disturbances is designed to estimate the lump unknown uncertainty value in real time. Experiments were conducted to validate the proposed method.

[1]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[2]  Rong-Jong Wai,et al.  Fuzzy neural network sliding-mode position controller for induction servo motor drive , 1999 .

[3]  Hassan K. Khalil,et al.  Output feedback control of nonlinear systems using RBF neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[4]  G. D. Buckner Intelligent bounds on modeling uncertainty: applications to sliding mode control , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[5]  H. K. Chiang,et al.  Integral variable structure controller with grey prediction for synchronous reluctance motor drive , 2004 .

[6]  Robert E. Betz Theoretical aspects of control of synchronous reluctance machines , 1992 .

[7]  Chih-Kai Chang,et al.  Robust RBFN Control for Linear InductionMotor Drive Using FPGA , 2008, IEEE Transactions on Power Electronics.

[8]  Faa-Jeng Lin,et al.  Intelligent Sliding-Mode Control Using RBFN for Magnetic Levitation System , 2007, IEEE Transactions on Industrial Electronics.

[9]  L. Ben-Brahim,et al.  Speed control of induction motor without rotational transducers , 1998, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242).

[10]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[11]  T. C. Chen,et al.  Model reference neural network controller for induction motor speed control , 2002 .

[12]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[13]  Tian-Hua Liu,et al.  A fuzzy sliding-mode controller design for a synchronous reluctance motor drive , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Kyeong-Hwa Kim Nonlinear speed control for a PM synchronous motor with a sequential parameter auto-tuning algorithm , 2005 .

[15]  Kuo-Kai Shyu,et al.  Incremental motion control of synchronous reluctance motor via multisegment sliding mode control method , 2002, IEEE Trans. Control. Syst. Technol..

[16]  K. Shyu,et al.  Optimal position control of synchronous reluctance motor via totally invariant variable structure control , 2000 .

[17]  Marimuthu Palaniswami,et al.  An adaptive tracking controller using neural networks for a class of nonlinear systems , 1998, IEEE Trans. Neural Networks.

[18]  Vadim I. Utkin,et al.  Sliding mode control , 2004 .

[19]  Huann‐Keng Chiang,et al.  Implementation of a sliding mode controller for synchronous reluctance motor drive considering core losses , 2003 .

[20]  Chih-Huang Tseng,et al.  Implementation of a DSP-Based Grey Integral Variable Structure Controller for Synchronous Reluctance Motor Drive , 2004 .

[21]  C. Cossar,et al.  Design of a synchronous reluctance motor drive , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[22]  Barry W. Williams,et al.  Online Modeling for Switched Reluctance Motors Using B-Spline Neural Networks , 2007, IEEE Transactions on Industrial Electronics.

[23]  Derong Liu,et al.  Neural network-based model reference adaptive control system , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[24]  K. T. Chau,et al.  Subharmonics and Chaos in Switched Reluctance Motor Drives , 2002, IEEE Power Engineering Review.

[25]  Faa-Jeng Lin,et al.  Novel sliding mode controller for synchronous motor drive , 1998 .

[26]  John E. Fletcher,et al.  Nonlinear robust control of a vector-controlled synchronous reluctance machine , 1999 .

[27]  Ronald G. Harley,et al.  MLP/RBF neural-networks-based online global model identification of synchronous generator , 2005, IEEE Transactions on Industrial Electronics.