On the computing power of fuzzy Turing machines

We work with fuzzy Turing machines (FTMs) and we study the relationship between this computational model and classical recursion concepts such as computable functions, recursively enumerable (r.e.) sets and universality. FTMs are first regarded as acceptors. It has recently been shown by J. Wiedermann that these machines have more computational power than classical Turing machines. Still, the context in which this formulation is valid has an unnatural implicit assumption. We settle necessary and sufficient conditions for a language to be r.e., by embedding it in a fuzzy language recognized by a FTM. We do the same thing for n-r.e. set. It is shown that there is no universal fuzzy machine, and ''universality'' is analyzed for smaller classes of FTMs. We argue for a definition of computable fuzzy function, when FTMs are understood as transducers. It is shown that, in this case, our notion of computable fuzzy function coincides with the classical one.

[1]  Graçaliz Pereira Dimuro,et al.  Interactive Computation: Stepping Stone in the Pathway From Classical to Developmental Computation , 2005, FInCo@ETAPS.

[2]  H. S. Allen The Quantum Theory , 1928, Nature.

[3]  Scott A. Smolka,et al.  Turing machines, transition systems, and interaction , 2004, Inf. Comput..

[4]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[5]  Jirí Wiedermann,et al.  Fuzzy Turing Machines Revised , 2002, Comput. Artif. Intell..

[6]  Pietro Di Gianantonio Real Number Computability and Domain Theory , 1996, Inf. Comput..

[7]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[8]  Ricardo Conejo,et al.  On a class of fuzzy computable functions , 2001, Fuzzy Sets Syst..

[9]  R. Soare Recursively enumerable sets and degrees , 1987 .

[10]  Erich Novak,et al.  The Real Number Model in Numerical Analysis , 1995, J. Complex..

[11]  Giangiacomo Gerla Effectiveness and multivalued logics , 2006, J. Symb. Log..

[12]  Benjam,et al.  Computability on the Interval Space: a Domain Approach , 2022 .

[13]  Eugene S. Santos Fuzzy and probabilistic programs , 1976, Inf. Sci..

[14]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[15]  Mustafa Demirci,et al.  Fuzzy Functions and Their Applications , 2000 .

[16]  Giangiacomo Gerla,et al.  Fuzzy subsets: a constructive approach , 1992 .

[17]  Kwang Hyung Lee,et al.  First Course on Fuzzy Theory and Applications , 2005, Advances in Soft Computing.

[18]  Lotfi A. Zadeh,et al.  Note on fuzzy languages , 1969, Inf. Sci..

[19]  Claudio Moraga Towards a fuzzy computability , 1999 .

[20]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[21]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[22]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Leon Harkleroad Fuzzy Recursion, RET's, and Isols , 1984, Math. Log. Q..

[24]  Giangiacomo Gerla,et al.  Fuzzy logic, continuity and effectiveness , 2002, Arch. Math. Log..

[25]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[26]  Irina Perfilieva,et al.  Fuzzy function as an approximate solution to a system of fuzzy relation equations , 2004, Fuzzy Sets Syst..

[27]  K. Peeva Fuzzy automata and languages: theory and applications , 2004 .

[28]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[29]  C. Allen,et al.  Turing Machines , 2002 .

[30]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Peter Linz,et al.  An Introduction to Formal Languages and Automata , 1997 .

[32]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[33]  P. Hájek Fuzzy logic and arithmetical hierarchy , 1995 .

[34]  M. W. Shields An Introduction to Automata Theory , 1988 .

[35]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[36]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[37]  George J. Klir,et al.  Fuzzy sets and fuzzy logic , 1995 .

[38]  Jirí Wiedermann,et al.  Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines , 2004, Theor. Comput. Sci..

[39]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[40]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[41]  Siegfried Gottwald,et al.  Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Miguel Delgado,et al.  Introduction to the concept of recursiveness of fuzzy functions , 1987 .