Body Topography Parcellates Human Sensory and Motor Cortex

Abstract The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand–face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.

[1]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[2]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[3]  Michael B. Calford,et al.  Dynamic representational plasticity in sensory cortex , 2002, Neuroscience.

[4]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[5]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[6]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[9]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[10]  Alessandra Angelucci,et al.  Controversial issues in visual cortex mapping: Extrastriate cortex between areas V2 and MT in human and nonhuman primates , 2015, Visual Neuroscience.

[11]  N. Jain,et al.  Intracortical and Thalamocortical Connections of the Hand and Face Representations in Somatosensory Area 3b of Macaque Monkeys and Effects of Chronic Spinal Cord Injuries , 2015, The Journal of Neuroscience.

[12]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[13]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[14]  F. Pulvermüller,et al.  Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action , 2016, Cortex.

[15]  Atsushi Nanbu [Somatotopy in the basal ganglia]. , 2009, Brain and nerve = Shinkei kenkyu no shinpo.

[16]  D. Simons,et al.  Cytochrome oxidase staining in the rat smI barrel cortex , 1985, The Journal of comparative neurology.

[17]  Arno Villringer,et al.  Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain , 2016, NeuroImage.

[18]  H. Johansen-Berg,et al.  Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation , 2015, Brain : a journal of neurology.

[19]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[20]  Amir Amedi,et al.  Discontinuity of cortical gradients reflects sensory impairment , 2015, Proceedings of the National Academy of Sciences.

[21]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[22]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[23]  F. Dick,et al.  Cerebral Cortex doi:10.1093/cercor/bhs213 Cerebral Cortex Advance Access published July 23, 2012 Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy † , 2022 .

[24]  Neeraj Jain,et al.  Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys , 2001, The Journal of comparative neurology.

[25]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[26]  Matthew J. McAuliffe,et al.  Medical Image Processing, Analysis and Visualization in clinical research , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[27]  Gretchen A. Stevens,et al.  A century of trends in adult human height , 2016, eLife.

[28]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[29]  Martin I. Sereno,et al.  Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps , 2016, bioRxiv.

[30]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[31]  M. Hallett,et al.  Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. , 1993, Advances in neurology.

[32]  Patrick Ragert,et al.  Pharmacological suppression of plastic changes in human primary somatosensory cortex after motor learning , 2003, Experimental Brain Research.

[33]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[34]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[35]  F. Cortese,et al.  Rapid sensory remapping in the adult human brain as inferred from phantom breast perception. , 1994, Neuroreport.

[36]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[37]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[38]  K. Funke Somatosensory areas in the telencephalon of the pigeon , 2004, Experimental Brain Research.

[39]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[40]  E G Jones,et al.  Hand/Face Border as a Limiting Boundary in the Body Representation in Monkey Somatosensory Cortex , 1997, The Journal of Neuroscience.

[41]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[42]  T. Bliss,et al.  Plasticity in the human central nervous system. , 2006, Brain : a journal of neurology.

[43]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[44]  Jerry L. Prince,et al.  Mapping Techniques for Aligning Sulci across Multiple Brains , 2003, MICCAI.

[45]  Jon H. Kaas,et al.  Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury , 1997, Nature.

[46]  M. Deschenes,et al.  Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway , 2009, Neuroscience Research.

[47]  P. J. Basser,et al.  Role of myelin plasticity in oscillations and synchrony of neuronal activity , 2014, Neuroscience.

[48]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[49]  Håkon Grydeland,et al.  Intracortical Posterior Cingulate Myelin Content Relates to Error Processing: Results from T1- and T2-Weighted MRI Myelin Mapping and Electrophysiology in Healthy Adults. , 2016, Cerebral cortex.

[50]  V. Ramachandran,et al.  Acute plasticity in the human somatosensory cortex following amputation , 1998, Neuroreport.

[51]  J. Bolton,et al.  Anatomie des menschlichen Gehirns und Ruckenmarks auf myelogenetischer Gründlage , 1921 .

[52]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[53]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.

[54]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[55]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[56]  A. Hopf,et al.  Photometric studies on the myeloarchitecture of the human parietal lobe. I. Parietal region. , 1969, Journal fur Hirnforschung.

[57]  Ben Jeurissen,et al.  T1 relaxometry of crossing fibres in the human brain , 2016, NeuroImage.

[58]  A. Hopf,et al.  Photometric studies on the myeloarchitecture of the human parietal lobe. II. Postcentral region. , 1970, Journal fur Hirnforschung.

[59]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[60]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[61]  Anders M. Dale,et al.  Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data , 2006, NeuroImage.

[62]  J. Chapin,et al.  Mapping the body representation in the SI cortex of anesthetized and awake rats , 1984, The Journal of comparative neurology.

[63]  Katrin Amunts,et al.  Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus , 2013, Brain Structure and Function.

[64]  J. Chapin,et al.  Corticocortical connections within the primary somatosensory cortex of the rat , 1987, The Journal of comparative neurology.

[65]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[66]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[67]  Heidi Johansen-Berg,et al.  Phantom pain is associated with preserved structure and function in the former hand area , 2013, Nature Communications.

[68]  J. Kaas,et al.  A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. , 1998, Cerebral cortex.

[69]  Padraic Monaghan,et al.  An amodal shared resource model of language-mediated visual attention , 2013, Front. Psychol..

[70]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[71]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[72]  C. Welker Receptive fields of barrels in the somatosensory neocortex of the rat , 1976, The Journal of comparative neurology.

[73]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[74]  Marta Kutas,et al.  Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. , 2011, Psychophysiology.

[75]  L. Barsalou Grounded cognition. , 2008, Annual review of psychology.

[76]  J. Kaas,et al.  Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys , 2004, The Journal of comparative neurology.

[77]  Amir Amedi,et al.  New Whole-Body Sensory-Motor Gradients Revealed Using Phase-Locked Analysis and Verified Using Multivoxel Pattern Analysis and Functional Connectivity , 2015, The Journal of Neuroscience.

[78]  Patrick Ragert,et al.  Tactile coactivation resets age‐related decline of human tactile discrimination , 2006, Annals of neurology.

[79]  R. Saxe,et al.  “Visual” Cortex Responds to Spoken Language in Blind Children , 2015, The Journal of Neuroscience.

[80]  Heidi Johansen-Berg,et al.  Revealing the neural fingerprints of a missing hand , 2016, eLife.

[81]  E. Zohary,et al.  Topographic Representation of the Human Body in the Occipitotemporal Cortex , 2010, Neuron.

[82]  Aaron Carass,et al.  Erratum to: The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software , 2010, Neuroinformatics.

[83]  S. Owen,et al.  Human Periventricular Grey Somatosensory Evoked Potentials Suggest Rostrocaudally Inverted Somatotopy , 2013, Stereotactic and Functional Neurosurgery.

[84]  S. Aglioti,et al.  Phantom lower limb as a perceptual marker of neural plasticity in the mature human brain , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[85]  Martin I. Sereno,et al.  Neuroscience: Plasticity and its limits , 2005, Nature.

[86]  A. Nakamura,et al.  Somatosensory Homunculus as Drawn by MEG , 1998, NeuroImage.

[87]  Jamie L. Reed,et al.  Intracortical connections are altered after long‐standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys , 2016, The Journal of comparative neurology.

[88]  N. Gelman,et al.  Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: Relation to estimated iron and water contents , 2001, Magnetic resonance in medicine.

[89]  J. Gore,et al.  Fine-scale functional connectivity in somatosensory cortex revealed by high-resolution fMRI. , 2011, Magnetic resonance imaging.

[90]  Jonathan C. W. Brooks,et al.  Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging , 2005, NeuroImage.

[91]  R. Buckner,et al.  Parcellating Cortical Functional Networks in Individuals , 2015, Nature Neuroscience.

[92]  Neeraj Jain,et al.  Few intrinsic connections cross the hand‐face border of area 3b of New World monkeys , 2002, The Journal of comparative neurology.

[93]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[94]  Arno Villringer,et al.  Functional connectivity‐based parcellation of the human sensorimotor cortex , 2014, The European journal of neuroscience.

[95]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[96]  David M. Groppe,et al.  Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. , 2011, Psychophysiology.

[97]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[98]  G. Thierry,et al.  Semantic priming in the motor cortex: evidence from combined repetitive transcranial magnetic stimulation and event-related potential , 2013, Neuroreport.

[99]  F. Ebner,et al.  Barrels and septa: Separate circuits in rat barrel field cortex , 1999, The Journal of comparative neurology.

[100]  Hugues Duffau,et al.  Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study , 2015, Brain Structure and Function.

[101]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[102]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[103]  Bernhard Preim,et al.  A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI , 2015, NeuroImage.

[104]  H. Killackey,et al.  Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex , 1995, The Journal of comparative neurology.

[105]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.