Storing quantum information for 30 seconds in a nanoelectronic device.

[1]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[2]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[3]  Gerhard Klimeck,et al.  Noninvasive spatial metrology of single-atom devices. , 2013, Nano letters.

[4]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[5]  J. P. Dehollain,et al.  High-fidelity readout and control of a nuclear spin qubit in silicon , 2013, Nature.

[6]  Atomic clock transitions in silicon-based spin qubits. , 2013, Nature nanotechnology.

[7]  E. Laird,et al.  A valley-spin qubit in a carbon nanotube. , 2012, Nature nanotechnology.

[8]  J. P. Dehollain,et al.  Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.

[9]  J. P. Dehollain,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[10]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[11]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[12]  F. Nori,et al.  Strong coupling of a spin qubit to a superconducting stripline cavity , 2012, 1204.4732.

[13]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[14]  J. Verduijn Silicon Quantum Electronics , 2012 .

[15]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[16]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[17]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[18]  Y. Hirayama,et al.  Measurement of the noise spectrum using a multiple-pulse sequence. , 2011, Physical review letters.

[19]  A. Doherty,et al.  Dynamical decoupling sequence construction as a filter-design problem , 2010, 1012.4262.

[20]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[21]  Carl R. Pidgeon,et al.  Coherent control of Rydberg states in silicon , 2010, Nature.

[22]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[23]  J. McCallum,et al.  Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport , 2010, 1002.4934.

[24]  D. Boehme,et al.  T1 and T2 spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects , 2009, 0905.0416.

[25]  T. Boykin,et al.  Gate-induced g-factor control and dimensional transition for donors in multivalley semiconductors , 2009, 0905.3200.

[26]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[27]  R. Hanson,et al.  Decoherence dynamics of a single spin versus spin ensemble , 2008 .

[28]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[29]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[30]  R. D. Sousa,et al.  Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: Theory , 2007, 0705.4088.

[31]  Gerhard Klimeck,et al.  High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.

[32]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[33]  M. Stutzmann,et al.  Phosphorus donors in highly strained silicon. , 2006, Physical review letters.

[34]  J. Bokor,et al.  Stark tuning of donor electron spins in silicon. , 2006, Physical review letters.

[35]  Ren-Bao Liu,et al.  Theory of electron spin decoherence by interacting nuclear spins in a quantum dot , 2005, cond-mat/0508441.

[36]  K. B. Whaley,et al.  Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon , 2005, cond-mat/0507318.

[37]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[38]  J. Morton,et al.  Measuring errors in single qubit rotations by pulsed electron paramagnetic resonance , 2004, quant-ph/0403226.