ARBITRARILY SMOOTH ORTHOGONAL NONSEPARABLEWAVELETS IN
暂无分享,去创建一个
[1] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[2] Y. Meyer,et al. Wavelets and Filter Banks , 1991 .
[3] Karlheinz Gröchenig,et al. Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.
[4] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[5] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[6] Martin Vetterli,et al. Nonseparable Multidimensional Perfect Reconstruction Filter Banks and , 1992 .
[7] Yang Wang,et al. Multidimensional two-scale dilation equations , 1993 .
[8] Lars F. Villemoes. Continuity of Nonseparable Quincunx Wavelets , 1994 .
[9] Jeffrey C. Lagarias,et al. Haar Type Orthonormal Wavelet Bases in R2 , 1995 .
[10] C. Heil,et al. Accuracy of Lattice Translates of Several Multidimensional Refinable Functions , 1998 .
[11] E. Belogay. Construction of smooth orthogonal wavelets with compact support in R[superscript d] , 1998 .
[12] Antoine Ayache. Construction of non separable dyadic compactly supported orthonormal wavelet bases for L2(R2) of arbitrarily high regularity , 1999 .
[13] Ming-Jun Lai,et al. Examples of bivariate nonseparable compactly supported orthonormal continuous wavelets , 2000, IEEE Trans. Image Process..