Logics from Quantum Computation

The theory of logical gates in quantum computation has suggested new forms of quantum logic, called quantum computational logics. The basic semantic idea is the following: the meaning of a sentence is identified with a quregister (a system of qubits) or, more generally, with a mixture of quregisters (called qumix). In this framework, any sentence α of the language gives rise to a quantum tree: a kind of quantum circuit that transforms the quregister (qumix) associated to the atomic subformulas of α into the quregister (qumix) associated to α. A variant of the quantum computational semantics is represented by the quantum holistic semantics, which permits us to represent entangled meanings. Physical models of quantum computational logics can be built by means of Mach–Zehnder interferometers.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[3]  S. A. Selesnick,et al.  Foundation for Quantum Computing II , 2007 .

[4]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[5]  Mingsheng Ying,et al.  Automata Theory Based on Quantum Logic II , 2000 .

[6]  M. L. Dalla Chiara,et al.  An Unsharp Logic from Quantum Computation , 2002, quant-ph/0201013.

[7]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .

[8]  Daowen Qiu,et al.  Automata theory based on quantum logic: some characterizations , 2004, Inf. Comput..

[9]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[10]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[11]  J. P. Rawling,et al.  Orthologic and quantum logic: models and computational elements , 2000, JACM.

[12]  David Deutsch,et al.  Machines, logic and quantum physics , 2000, Bull. Symb. Log..

[13]  Roberto Giuntini,et al.  Qubit Semantics and Quantum Trees , 2002 .

[14]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[17]  C. Petri Grundsätzliches zur Beschreibung Diskreter Prozesse , 1967 .