specific cortical-striatal-cerebellar networks Controlling instabilities in manipulation requires

[1]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[2]  Mark R. Cutkosky,et al.  On grasp choice, grasp models, and the design of hands for manufacturing tasks , 1989, IEEE Trans. Robotics Autom..

[3]  Scott Peltier,et al.  Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination , 2005, NeuroImage.

[4]  Andreea C. Bostan,et al.  The basal ganglia communicate with the cerebellum , 2010, Proceedings of the National Academy of Sciences.

[5]  L. Selen,et al.  Impedance Control Reduces Instability That Arises from Motor Noise , 2009, The Journal of Neuroscience.

[6]  G. Bruce Pike,et al.  Hemodynamic and metabolic responses to neuronal inhibition , 2004, NeuroImage.

[7]  Marco Davare,et al.  Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans , 2008, The Journal of physiology.

[8]  Scott T. Grafton,et al.  The basal ganglia network mediates the planning of movement amplitude , 2004, The European journal of neuroscience.

[9]  Viviana Versace,et al.  In vivo definition of parieto-motor connections involved in planning of grasping movements , 2010, NeuroImage.

[10]  Francisco J Valero-Cuevas,et al.  Manipulating the edge of instability. , 2007, Journal of biomechanics.

[11]  Daniel M. Corcos,et al.  Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans , 2004, NeuroImage.

[12]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[13]  Marie-Claude Hepp-Reymond,et al.  3 – Precision Grip in Humans: Temporal and Spatial Synergies , 1996 .

[14]  J. Krakauer,et al.  A computational neuroanatomy for motor control , 2008, Experimental Brain Research.

[15]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[16]  K. J. Cole,et al.  Sensory-motor coordination during grasping and manipulative actions , 1992, Current Biology.

[17]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[18]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[19]  Saori C. Tanaka,et al.  Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops , 2004, Nature Neuroscience.

[20]  R. Johansson,et al.  Integration of sensory information during the programming of precision grip: comments on the contributions of size cues , 2004, Experimental Brain Research.

[21]  J. R. Augustine Circuitry and functional aspects of the insular lobe in primates including humans , 1996, Brain Research Reviews.

[22]  Francisco J Valero-Cuevas,et al.  An Integrative Approach to the Biomechanical Function and Neuromuscular Control of the Fingers , 2004 .

[23]  T Brochier,et al.  Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. , 2007, Journal of neurophysiology.

[24]  P. Strick,et al.  The cerebellum communicates with the basal ganglia , 2005, Nature Neuroscience.

[25]  Geoffrey E. Hinton,et al.  Parallel computations for controlling an arm. , 1984, Journal of motor behavior.

[26]  T. Allison,et al.  Electrophysiological studies of color processing in human visual cortex. , 1993, Electroencephalography and clinical neurophysiology.

[27]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[28]  K. Mosier,et al.  Parallel cortical networks for volitional control of swallowing in humans , 2001, Experimental Brain Research.

[29]  Hong Yu,et al.  Role of individual basal ganglia nuclei in force amplitude generation. , 2007, Journal of neurophysiology.

[30]  Barbara Gentz,et al.  Pathwise description of dynamic pitchfork bifurcations with additive noise , 2002 .

[31]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[32]  W. T. Thach,et al.  Cerebellar ataxia: abnormal control of interaction torques across multiple joints. , 1996, Journal of neurophysiology.

[33]  Daniel Bullock,et al.  A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands , 2003, Neural Networks.

[34]  Scott T. Grafton,et al.  Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp , 2005, Nature Neuroscience.

[35]  R. Johansson,et al.  Cortical activity in precision- versus power-grip tasks: an fMRI study. , 2000, Journal of neurophysiology.

[36]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[37]  Scott T Grafton,et al.  The Anterior Intraparietal Sulcus Mediates Grasp Execution, Independent of Requirement to Update: New Insights from Transcranial Magnetic Stimulation , 2006, The Journal of Neuroscience.

[38]  S Thesen,et al.  Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI , 2000, Magnetic resonance in medicine.

[39]  K. J. Cole,et al.  Grip force adjustments evoked by load force perturbations of a grasped object. , 1988, Journal of neurophysiology.

[40]  John C. Rothwell,et al.  Time Course of Functional Connectivity between Dorsal Premotor and Contralateral Motor Cortex during Movement Selection , 2006, The Journal of Neuroscience.

[41]  S. Cooper,et al.  Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. , 2000, Journal of neurophysiology.

[42]  Roland S. Johansson,et al.  Sensory Control of Dexterous Manipulation in Humans , 1996 .

[43]  R. Johansson,et al.  Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. , 2003, Journal of neurophysiology.

[44]  F. Valero-Cuevas,et al.  The strength-dexterity test as a measure of dynamic pinch performance. , 2003, Journal of biomechanics.

[45]  R. Lemon,et al.  Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles. , 2003, Journal of neurophysiology.

[46]  G. E. Loeb,et al.  A hierarchical foundation for models of sensorimotor control , 1999, Experimental Brain Research.

[47]  Hans Forssberg,et al.  Human brain activity in the control of fine static precision grip forces: an fMRI study , 2001, The European journal of neuroscience.

[48]  R. Passingham,et al.  Relation between cerebral activity and force in the motor areas of the human brain. , 1995, Journal of neurophysiology.

[49]  R S Johansson,et al.  Sensory input and control of grip. , 1998, Novartis Foundation symposium.

[50]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[51]  J. Napier The prehensile movements of the human hand. , 1956, The Journal of bone and joint surgery. British volume.

[52]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[53]  H. Forssberg,et al.  Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. , 2001, Journal of neurophysiology.