Finite life span for improving the selection scheme in evolution strategies
暂无分享,去创建一个
[1] Hans-Georg Beyer,et al. Performance analysis of evolutionary optimization with cumulative step length adaptation , 2004, IEEE Transactions on Automatic Control.
[2] Nikolaus Hansen,et al. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed , 2009, GECCO '09.
[3] Thomas Bäck,et al. How to Do Recombination in Evolution Strategies: An Empirical Study , 2009, IWINAC.
[4] Oliver Kramer,et al. A Review of Constraint-Handling Techniques for Evolution Strategies , 2010, Appl. Comput. Intell. Soft Comput..
[5] L. Darrell Whitley,et al. Evaluating Evolutionary Algorithms , 1996, Artif. Intell..
[6] Ying Tan,et al. Artificial Immune System , 2016 .
[7] Carlos A. Coello Coello,et al. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..
[8] Oliver Kramer,et al. Premature Convergence in Constrained Continuous Search Spaces , 2008, PPSN.
[9] Ali Ahrari,et al. On the utility of randomly generated functions for performance evaluation of evolutionary algorithms , 2010, Optim. Lett..
[10] Thomas Bäck,et al. Contemporary Evolution Strategies , 2013, Natural Computing Series.
[11] Jesús Marín,et al. How landscape ruggedness influences the performance of real-coded algorithms: a comparative study , 2012, Soft Comput..
[12] Marcus Gallagher,et al. A general-purpose tunable landscape generator , 2006, IEEE Transactions on Evolutionary Computation.
[13] Ali Ahrari,et al. An improved evolution strategy with adaptive population size , 2015 .
[14] Anne Auger,et al. Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..
[15] Thomas Jansen,et al. On the role of age diversity for effective aging operators , 2011, Evol. Intell..
[16] Marek Kisiel-Dorohinicki,et al. Maintaining Population Diversity in Evolution Strategy for Engineering Problems , 2008, IEA/AIE.
[17] Hans-Georg Beyer,et al. Self-adaptation of evolution strategies under noisy fitness evaluations , 2006, Genetic Programming and Evolvable Machines.
[18] Nikolaus Hansen,et al. Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.
[19] Hans-Georg Beyer,et al. A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..
[20] Thomas Jansen,et al. Maximal age in randomized search heuristics with aging , 2009, GECCO.
[21] Xiaodong Li,et al. A framework for generating tunable test functions for multimodal optimization , 2011, Soft Comput..
[22] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[23] Thomas Stützle,et al. Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set , 2012, Soft Computing.
[24] Bernardetta Addis,et al. A new class of test functions for global optimization , 2007, J. Glob. Optim..
[25] Hans-Georg Beyer,et al. Evolution strategies with cumulative step length adaptation on the noisy parabolic ridge , 2008, Natural Computing.
[26] Hans-Georg Beyer,et al. On the Behaviour of Evolution Strategies Optimising Cigar Functions , 2010, Evolutionary Computation.
[27] Dirk V. Arnold,et al. Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..
[28] Cláudio F. Lima,et al. On the utility of the multimodal problem generator for assessing the performance of evolutionary algorithms , 2006, GECCO '06.
[29] Günter Rudolph,et al. Contemporary Evolution Strategies , 1995, ECAL.
[30] Hans-Georg Beyer,et al. The Dynamics of Self-Adaptive Multirecombinant Evolution Strategies on the General Ellipsoid Model , 2014, IEEE Transactions on Evolutionary Computation.
[31] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[32] Francisco Herrera,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.
[33] Masoud Shariat Panahi,et al. On the limitations of classical benchmark functions for evaluating robustness of evolutionary algorithms , 2010, Appl. Math. Comput..
[34] Anne Auger,et al. Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.
[35] Thomas Bäck,et al. Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..
[36] Günter Rudolph,et al. When parameter tuning actually is parameter control , 2011, GECCO '11.
[37] Bernhard Sendhoff,et al. Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy - , 2008, PPSN.
[38] Marco Locatelli,et al. On the Multilevel Structure of Global Optimization Problems , 2005, Comput. Optim. Appl..
[39] Thomas Jansen,et al. Comparing Different Aging Operators , 2009, ICARIS.
[40] Oliver Kramer,et al. Evolutionary self-adaptation: a survey of operators and strategy parameters , 2010, Evol. Intell..
[41] Hans-Paul Schwefel,et al. Evolution strategies – A comprehensive introduction , 2002, Natural Computing.
[42] Ofer M. Shir,et al. Niching in Evolution Strategies and Its Application to Laser Pulse Shaping , 2005, Artificial Evolution.
[43] Dirk V. Arnold,et al. Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[44] Thomas Jansen,et al. On benefits and drawbacks of aging strategies for randomized search heuristics , 2011, Theor. Comput. Sci..
[45] Yaroslav D. Sergeyev,et al. Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.