Geriatric muscle stem cells switch reversible quiescence into senescence

[1]  M. Blagosklonny Selective anti-cancer agents as anti-aging drugs , 2013, Cancer biology & therapy.

[2]  P. Muñoz-Cánoves,et al.  Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells , 2013, The FEBS journal.

[3]  Tom H. Cheung,et al.  Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging , 2013, Cell reports.

[4]  Tom H. Cheung,et al.  Molecular regulation of stem cell quiescence , 2013, Nature Reviews Molecular Cell Biology.

[5]  D. Baker,et al.  p21 both attenuates and drives senescence and aging in BubR1 progeroid mice. , 2013, Cell reports.

[6]  Feodor Price,et al.  Satellite cells and the muscle stem cell niche. , 2013, Physiological reviews.

[7]  K. Rudolph,et al.  DNA damage checkpoints in stem cells, ageing and cancer , 2012, Nature Reviews Molecular Cell Biology.

[8]  M. A. Basson,et al.  The aged niche disrupts muscle stem cell quiescence , 2012, Nature.

[9]  S. Arthur,et al.  The Effect of Physiological Stimuli on Sarcopenia; Impact of Notch and Wnt Signaling on Impaired Aged Skeletal Muscle Repair , 2012, International journal of biological sciences.

[10]  P. Muñoz-Cánoves,et al.  Amelioration of Duchenne muscular dystrophy in mdx mice by elimination of matrix-associated fibrin-driven inflammation coupled to the αMβ2 leukocyte integrin receptor. , 2012, Human molecular genetics.

[11]  M. Blasco,et al.  A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division , 2012, Cell.

[12]  Tom H. Cheung,et al.  Maintenance of muscle stem cell quiescence by microRNA-489 , 2012, Nature.

[13]  N. Eberhardt,et al.  Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency , 2012, Nature Cell Biology.

[14]  N. LeBrasseur,et al.  Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders , 2011, Nature.

[15]  K. Bird,et al.  Bmi1 Is Expressed in Postnatal Myogenic Satellite Cells, Controls Their Maintenance and Plays an Essential Role in Repeated Muscle Regeneration , 2011, PloS one.

[16]  A. Bracken,et al.  Transcriptional regulation of cellular senescence , 2011, Oncogene.

[17]  Ling Liu,et al.  Manifestations and mechanisms of stem cell aging , 2011, The Journal of cell biology.

[18]  M. Sinha,et al.  Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. , 2011, Cold Spring Harbor symposia on quantitative biology.

[19]  S. Delp,et al.  Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice , 2010, Cell.

[20]  Brian K. Kennedy,et al.  Progeria syndromes and ageing: what is the connection? , 2010, Nature Reviews Molecular Cell Biology.

[21]  Michael Ruogu Zhang,et al.  Dissecting the Unique Role of the Retinoblastoma Tumor Suppressor during Cellular Senescence , 2022 .

[22]  A. Cumano,et al.  An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. , 2010, Stem cell research.

[23]  J. Licht,et al.  Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration , 2010, Cell stem cell.

[24]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[25]  M. Serrano,et al.  Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence , 2009, PloS one.

[26]  D. Reinberg,et al.  Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. , 2008, Molecular cell.

[27]  A. L. Fridman,et al.  Critical pathways in cellular senescence and immortalization revealed by gene expression profiling , 2008, Oncogene.

[28]  I. Conboy,et al.  Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells , 2008, Nature.

[29]  F. D. D. Fagagna Living on a break: cellular senescence as a DNA-damage response , 2008, Nature Reviews Cancer.

[30]  Megan Scudellari To stay young, kill zombie cells , 2017, Nature.

[31]  T. Shavlakadze,et al.  Age influences the early events of skeletal muscle regeneration: Studies of whole muscle grafts transplanted between young (8 weeks) and old (13–21 months) mice , 2008, Experimental Gerontology.

[32]  A. Uezumi,et al.  Molecular Signature of Quiescent Satellite Cells in Adult Skeletal Muscle , 2007, Stem cells.

[33]  A. Luttun,et al.  uPA deficiency exacerbates muscular dystrophy in MDX mice , 2007, The Journal of Cell Biology.

[34]  I. Conboy,et al.  Loss of stem cell regenerative capacity within aged niches , 2007, Aging cell.

[35]  E. Wagner,et al.  Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation , 2007, The EMBO journal.

[36]  Kristian Helin,et al.  The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. , 2007, Genes & development.

[37]  R. DePinho,et al.  Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a , 2006, Nature.

[38]  S. Morrison,et al.  Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing , 2006, Nature.

[39]  G. Shefer,et al.  Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. , 2006, Developmental biology.

[40]  P. Klatt,et al.  Oncogenic activity of Cdc6 through repression of the INK4/ARF locus , 2006, Nature.

[41]  Yi Zhang,et al.  Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. , 2005, Molecular cell.

[42]  T. Rando,et al.  Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. , 2005, Trends in cell biology.

[43]  M. Grounds,et al.  Strength at the extracellular matrix–muscle interface , 2005, Scandinavian journal of medicine & science in sports.

[44]  M. Barbacid,et al.  Tumour biology: Senescence in premalignant tumours , 2005, Nature.

[45]  W. Derave,et al.  No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8). , 2005, American journal of physiology. Endocrinology and metabolism.

[46]  T. Lange,et al.  Significant Role for p16INK4a in p53-Independent Telomere-Directed Senescence , 2004, Current Biology.

[47]  M. Vidal,et al.  Role of histone H2A ubiquitination in Polycomb silencing , 2004, Nature.

[48]  G. Butler-Browne,et al.  Regenerative potential of human skeletal muscle during aging , 2002, Aging cell.

[49]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[50]  A. Berns,et al.  Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice , 2001, Nature.

[51]  R. DePinho,et al.  The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus , 1999, Nature.

[52]  Y. Nabeshima,et al.  Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates 'reserve cells'. , 1998, Journal of cell science.