Classification of 64-element finite semifields

A finite semifield $D$ is a finite nonassociative ring with identity such that the set $D^*=D\setminus\{0\}$ is closed under the product. In this paper we obtain a computer-assisted description of all 64-element finite semifields, which completes the classification of finite semifields of order 125 or less.

[1]  Irvin Roy Hentzel,et al.  Primitivity of Finite semifields with 64 and 81 Elements , 2007, Int. J. Algebra Comput..

[2]  A. Calderbank,et al.  Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .

[3]  W. Kantor,et al.  Symplectic semifield planes and ℤ₄–linear codes , 2003 .

[4]  Giampaolo Menichetti On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .

[5]  Minerva Cordero,et al.  A survey of finite semifields , 1999, Discret. Math..

[6]  William M. Kantor,et al.  Commutative semifields and symplectic spreads , 2003 .

[7]  W. Kantor Finite semifields , 2005 .

[8]  A. A. Albert,et al.  On nonassociative division algebras , 1952 .

[9]  J. H. Maclagan-Wedderburn A theorem on finite algebras , 1905 .

[10]  A. Adrian Albert,et al.  Generalized twisted fields. , 1961 .

[11]  G. Menichetti Algebre tridimensionali su un campo di Galois , 1973 .

[12]  Leonard Eugene Dickson Linear algebras in which division is always uniquely possible , 1906 .

[13]  M. Hall The Theory Of Groups , 1959 .

[14]  D. Knuth Finite semifields and projective planes , 1965 .

[15]  Norman L. Johnson,et al.  8 Semifield Planes of Order 82 , 1990, Discret. Math..

[16]  Semifield Planes of Order 81 , 2008 .

[17]  B. David Saunders,et al.  Efficient matrix rank computation with application to the study of strongly regular graphs , 2007, ISSAC '07.

[18]  A. Adrian Albert Finite noncommutative division algebras , 1958 .

[19]  G. Winskel What Is Discrete Mathematics , 2007 .

[20]  G. Wene On the multiplicative structure of finite division rings , 1991 .

[21]  Ignacio F. Rúa,et al.  Symplectic spread-based generalized Kerdock codes , 2007, Des. Codes Cryptogr..

[22]  Erwin Kleinfeld Techniques for Enumerating Veblen-Wedderburn Systems , 1960, JACM.