Massive MIMO with a Generalized Channel Model: Fundamental Aspects

Massive multiple-input multiple-output (MIMO) is becoming a mature technology, and has been approved for standardization in the 5G space. Although there are many papers on the theoretical analysis of massive MIMO, the majority of relevant work assumes the simplified, yet overly idealistic, Kronecker-type model for spatial correlation. Motivated by the deficiencies of the Kronecker model, we invoke a naturally generalized spatial correlation model, that is the Weichselberger model. For this model, we pursue a comprehensive analysis of massive MIMO performance in terms of channel hardening and favorable propagation (FP). We identify a number of scenarios under which massive MIMO may fail and discuss their relevance from a practical perspective.

[1]  Emil Björnson,et al.  Massive MIMO with Non-Ideal Arbitrary Arrays: Hardware Scaling Laws and Circuit-Aware Design , 2014, IEEE Transactions on Wireless Communications.

[2]  Giuseppe Caire,et al.  Joint Spatial Division and Multiplexing—The Large-Scale Array Regime , 2013, IEEE Transactions on Information Theory.

[3]  Antonia Maria Tulino,et al.  Up-link multi-user MIMO capacity in low-power regime , 2010, 2010 IEEE International Symposium on Information Theory.

[4]  Jinhui Chen,et al.  When does asymptotic orthogonality exist for very large arrays? , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[5]  Jon W. Wallace,et al.  Deficiencies of 'Kronecker' MIMO radio channel model , 2003 .

[6]  Erik G. Larsson,et al.  Aspects of favorable propagation in Massive MIMO , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[7]  Erik G. Larsson,et al.  Fundamentals of massive MIMO , 2016, SPAWC.

[8]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[9]  Akbar M. Sayeed,et al.  Sublinear Capacity Scaling Laws for Sparse MIMO Channels , 2011, IEEE Transactions on Information Theory.

[10]  Xiang-Gen Xia,et al.  Pilot Reuse for Massive MIMO Transmission over Spatially Correlated Rayleigh Fading Channels , 2015, IEEE Transactions on Wireless Communications.

[11]  Xin You,et al.  Massive MIMO Channel Modeling , 2015 .

[12]  Michail Matthaiou,et al.  Impact of Line-of-Sight and Unequal Spatial Correlation on Uplink MU-MIMO Systems , 2017, IEEE Wireless Communications Letters.

[13]  Ernst Bonek,et al.  Deficiencies of a Popular Stochastic MIMO Radio Channel Model , 2003 .

[14]  Erik G. Larsson,et al.  Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems , 2011, IEEE Transactions on Communications.

[15]  Emil Björnson,et al.  Massive MIMO Has Unlimited Capacity , 2017, IEEE Transactions on Wireless Communications.

[16]  Emil Björnson,et al.  Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency , 2018, Found. Trends Signal Process..

[17]  Ernst Bonek,et al.  A stochastic MIMO channel model with joint correlation of both link ends , 2006, IEEE Transactions on Wireless Communications.

[18]  Shi Jin,et al.  On the Sum-Rate of Multiuser MIMO Uplink Channels with Jointly-Correlated Rician Fading , 2011, IEEE Transactions on Communications.

[19]  Michail Matthaiou,et al.  Space-Constrained Massive MIMO: Hitting the Wall of Favorable Propagation , 2015, IEEE Commun. Lett..

[20]  Minghua Xia,et al.  Spectral-Efficiency Analysis of Massive MIMO Systems in Centralized and Distributed Schemes , 2016, IEEE Transactions on Communications.

[21]  Preben E. Mogensen,et al.  A stochastic MIMO radio channel model with experimental validation , 2002, IEEE J. Sel. Areas Commun..

[22]  Michail Matthaiou,et al.  Does Massive MIMO Fail in Ricean Channels? , 2018, IEEE Wireless Communications Letters.

[23]  ChannelsAkbar M. Sayeed Deconstructing Multi-Antenna Fading , 2002 .

[24]  Matthew R. McKay,et al.  Statistical Eigenmode Transmission Over Jointly Correlated MIMO Channels , 2009, IEEE Transactions on Information Theory.

[25]  Akbar M. Sayeed,et al.  Why Does the Kronecker Model Result in Misleading Capacity Estimates? , 2008, IEEE Transactions on Information Theory.