PGD in linear and nonlinear Computational Solid Mechanics

Mechanics continues to supply numerous science and engineering problems which remain inaccessible to standard FE codes. Not all these problems are exotic, and many are indeed practical problems. A significant number of these engineering challenges are related to the today’s growing interest in physics-based material models described on a scale smaller than that of the macroscopic structure, with applications such as structural design for which quasi real time simulation is mandatory. Design parameters and lacks of knowledge (variability, uncertainties) involving multiple parameters make these problems even more difficult.

[1]  Vincent Faucher,et al.  A time and space mortar method for coupling linear modal subdomains and non-linear subdomains in explicit structural dynamics , 2003 .

[2]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[3]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[4]  Pierre Ladevèze,et al.  A new approach in non‐linear mechanics: The large time increment method , 1990 .

[5]  F. Devries,et al.  Homogenization and damage for composite structures , 1989 .

[6]  Pedro Díez,et al.  An error estimator for separated representations of highly multidimensional models , 2010 .

[7]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[8]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[9]  David Néron,et al.  A rational strategy for the resolution of parametrized problems in the PGD framework , 2013 .

[10]  Pierre Ladevèze,et al.  Goal-Oriented Control of Finite Element Models: Recent Advances and Performances on 3D Industrial Applications , 2012 .

[11]  Carlo L. Bottasso,et al.  Multiscale temporal integration , 2002 .

[12]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[13]  David Néron,et al.  Multiparametric analysis within the proper generalized decomposition framework , 2012 .

[14]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[15]  Ludovic Chamoin,et al.  New bounding techniques for goal‐oriented error estimation applied to linear problems , 2013, 1704.06688.

[16]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[17]  Pierre Ladevèze,et al.  A Non-incremental and Adaptive Computational Approach in Thermo-viscoplasticity , 1999 .

[18]  Olivier Allix,et al.  A new multi-solution approach suitable for structural identification problems , 2002 .

[19]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[20]  David Dureisseix,et al.  A LATIN computational strategy for multiphysics problems: application to poroelasticity , 2003 .

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  C. Farhat,et al.  A numerically scalable domain decomposition method for the solution of frictionless contact problems , 2001 .

[23]  Alain Combescure,et al.  Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .

[24]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[25]  Pierre Ladevèze,et al.  Modeling and simulation of damage in elastomer structures at high strains , 2002 .

[26]  E. Sanchez-Palencia,et al.  Comportements local et macroscopique d'un type de milieux physiques heterogenes , 1974 .

[27]  Pierre Ladevèze,et al.  Strict upper error bounds on computed outputs of interest in computational structural mechanics , 2008 .

[28]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[29]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[30]  J. Z. Zhu,et al.  The finite element method , 1977 .

[31]  Pierre Ladevèze,et al.  Toward guaranteed PGD-reduced models , 2012 .

[32]  P. Ladevèze,et al.  A large time increment approach for thermo-mechanical problems , 1999 .

[33]  Pierre Ladevèze,et al.  Bounds on history‐dependent or independent local quantities in viscoelasticity problems solved by approximate methods , 2007 .

[34]  P. Ladevèze,et al.  A large time increment approach for cyclic viscoplasticity , 1993 .

[35]  Ludovic Chamoin,et al.  Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems , 2012 .

[36]  David Ryckelynck,et al.  An efficient adaptive strategy to master the global quality of viscoplastic analysis , 2000 .

[37]  Modelling of nonstationary heat conduction problems in micro-periodic composites using homogenisation theory with corrective terms , 2000 .

[38]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[39]  Pierre Ladevèze,et al.  A nonincremental approach for large displacement problems , 1997 .

[40]  Pierre Ladevèze,et al.  Mastering Calculations in Linear and Nonlinear Mechanics , 2004 .

[41]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[42]  Pierre Ladevèze,et al.  Robust control of PGD-based numerical simulations , 2012 .

[43]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[44]  Philippe Marin,et al.  Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .

[45]  Pierre Ladevèze,et al.  On multiscale computational mechanics with time-space homogenization , 2008 .

[46]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[47]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[48]  David Dureisseix,et al.  A computational strategy for poroelastic problems with a time interface between coupled physics , 2008 .

[49]  Pierre Ladevèze,et al.  Proper Generalized Decomposition applied to linear acoustic: A new tool for broad band calculation , 2014 .

[50]  David Dureisseix,et al.  A computational strategy for thermo‐poroelastic structures with a time–space interface coupling , 2008 .

[51]  Pierre Ladevèze,et al.  On a mixed and multiscale domain decomposition method , 2007 .

[52]  Ludovic Chamoin,et al.  On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples , 2011, 1704.06680.

[53]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[54]  Dimitrios V. Rovas,et al.  Reduced-basis output bound methods for parabolic problems , 2006 .

[55]  Pierre Ladevèze,et al.  Duality preserving discretization of the large time increment methods , 2000 .

[56]  Françoise Comte,et al.  A direct method for the solution of evolution problems , 2006 .

[57]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[58]  Pierre Ladevèze,et al.  Multiscale Computational Strategy With Time and Space Homogenization: A Radial-Type Approximation Technique for Solving Microproblems , 2004 .

[59]  Pierre Ladevèze,et al.  A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems , 2008 .

[60]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[61]  David Néron,et al.  A model reduction technique based on the PGD for elastic-viscoplastic computational analysis , 2013 .

[62]  Pierre Ladevèze,et al.  Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems , 2006 .

[63]  Jacob Fish, Wen Chen Uniformly Valid Multiple Spatial-Temporal Scale Modeling for Wave Propagation in Heterogeneous Media , 2001 .

[64]  Pierre Ladevèze,et al.  Proper Generalized Decomposition for Multiscale and Multiphysics Problems , 2010 .

[65]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[66]  David Dureisseix,et al.  A multi-time-scale strategy for multiphysics problems: Application to poroelasticity , 2003 .

[67]  Pierre Ladevèze,et al.  A new non-intrusive technique for the construction of admissible stress fields in model verification , 2010 .

[68]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[69]  Jean-Jacques Thomas,et al.  Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique , 2002 .

[70]  P. Ladevèze,et al.  A multiscale computational approach for contact problems , 2002 .

[71]  P. Ladevèze,et al.  Strict upper bounds of the error in calculated outputs of interest for plasticity problems , 2012 .

[72]  Pierre Ladevèze,et al.  A PGD-based homogenization technique for the resolution of nonlinear multiscale problems , 2013 .