Characteristics of invariant weights related to code equivalence over rings

The Equivalence Theorem states that, for a given weight on an alphabet, every isometry between linear codes extends to a monomial transformation of the entire space. This theorem has been proved for several weights and alphabets, including the original MacWilliams’ Equivalence Theorem for the Hamming weight on codes over finite fields. The question remains: What conditions must a weight satisfy so that the Extension Theorem will hold? In this paper we provide an algebraic framework for determining such conditions, generalising the approach taken in Greferath and Honold (Proceedings of the Tenth International Workshop in Algebraic and Combinatorial Coding Theory (ACCT-10), pp. 106–111. Zvenigorod, Russia, 2006).

[1]  Jay A. Wood Extension Theorems for Linear Codes over Finite Rings , 1997, AAECC.

[2]  L. M. Arkhipov Finite rings of principal ideals , 1972 .

[3]  Jay A. Wood Code equivalence characterizes finite Frobenius rings , 2007 .

[4]  Jay A. Wood,et al.  Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.

[5]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[6]  B. R. McDonald Finite Rings With Identity , 1974 .

[7]  R. Tennant Algebra , 1941, Nature.

[8]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[9]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[10]  Richard W. Hamming,et al.  Coding and Information Theory , 2018, Feynman Lectures on Computation.

[11]  Marcus Greferath,et al.  Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.

[12]  John Dauns Modules and Rings , 1994 .

[13]  A. A. Nechaev,et al.  FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES , 2004 .

[14]  A. Goldie MODULES AND RINGS (London Mathematical Society Monographs, 17) , 1983 .

[15]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[16]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[17]  W. Edwin Clark,et al.  Finite chain rings , 1973 .

[18]  Ioana Constantinescu,et al.  On the concept of code-isomorphy , 1996 .

[19]  H. Ward,et al.  Note Characters and the Equivalence of Codes , 2004 .

[20]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.