Characteristics of invariant weights related to code equivalence over rings
暂无分享,去创建一个
[1] Jay A. Wood. Extension Theorems for Linear Codes over Finite Rings , 1997, AAECC.
[2] L. M. Arkhipov. Finite rings of principal ideals , 1972 .
[3] Jay A. Wood. Code equivalence characterizes finite Frobenius rings , 2007 .
[4] Jay A. Wood,et al. Characters and the Equivalence of Codes , 1996, J. Comb. Theory, Ser. A.
[5] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[6] B. R. McDonald. Finite Rings With Identity , 1974 .
[7] R. Tennant. Algebra , 1941, Nature.
[8] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[9] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[10] Richard W. Hamming,et al. Coding and Information Theory , 2018, Feynman Lectures on Computation.
[11] Marcus Greferath,et al. Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.
[12] John Dauns. Modules and Rings , 1994 .
[13] A. A. Nechaev,et al. FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES , 2004 .
[14] A. Goldie. MODULES AND RINGS (London Mathematical Society Monographs, 17) , 1983 .
[15] J. Macwilliams. A theorem on the distribution of weights in a systematic code , 1963 .
[16] T. Honold,et al. Weighted modules and representations of codes , 1998 .
[17] W. Edwin Clark,et al. Finite chain rings , 1973 .
[18] Ioana Constantinescu,et al. On the concept of code-isomorphy , 1996 .
[19] H. Ward,et al. Note Characters and the Equivalence of Codes , 2004 .
[20] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.