Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale.

Mesoscale phenomena are ubiquitous and highly energetic features of ocean circulation. Their influence on biological and biogeochemical processes varies widely, stemming not only from advective transport but also from the generation of variations in the environment that affect biological and chemical rates. The ephemeral nature of mesoscale features in the ocean makes it difficult to elucidate the attendant mechanisms of physical-biological-biogeochemical interaction, necessitating the use of multidisciplinary approaches involving in situ observations, remote sensing, and modeling. All three aspects are woven through this review in an attempt to synthesize current understanding of the topic, with particular emphasis on novel developments in recent years.

[1]  E. Lindstrom,et al.  Structure and Origin of 18°C Water Observed during the POLYMODE Local Dynamics Experiment , 1986 .

[2]  P. Xiu,et al.  Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies , 2013 .

[3]  Eric Shulenberger,et al.  The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered , 1981 .

[4]  Adrian P. Martin,et al.  Efficient Upscaling Of Ocean Biogeochemistry , 2013 .

[5]  P. Holligan,et al.  Phytoplankton growth and cyclonic eddies , 1979, Nature.

[6]  M. Lévy,et al.  The Modulation of Biological Production by Oceanic Mesoscale Turbulence , 2008 .

[7]  Ananda Pascual,et al.  Improved description of the ocean mesoscale variability by combining four satellite altimeters , 2006 .

[8]  John D. Woods,et al.  Scale Upwelling and Primary Production , 1988 .

[9]  Adrian P. Martin,et al.  An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2015 .

[10]  C. L. Leonard,et al.  Mesoscale Eddies Drive Increased Silica Export in the Subtropical Pacific Ocean , 2007, Science.

[11]  Richard G. Williams Modification of ocean eddies by air-sea interaction , 1988 .

[12]  J. McCarthy,et al.  Multidisciplinary program to study warm core rings , 1982 .

[13]  Gulf stream cold-core rings: their physics, chemistry, and biology. , 1981, Science.

[14]  Adrian P. Martin,et al.  Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy , 2001 .

[15]  R. Lumpkin,et al.  Hawaii Cyclonic Eddies and Blue Marlin Catches: The Case Study of the 1995 Hawaiian International Billfish Tournament , 2002 .

[16]  Robert R. Bidigare,et al.  Biological enhancement at cyclonic eddies tracked with GOES Thermal Imagery in Hawaiian waters , 2001 .

[17]  P. Ryan,et al.  Exploitation of mesoscale oceanographic features by grey-headed albatross Thalassarche chrysostoma in the southern Indian Ocean , 2001 .

[18]  A. Provenzale,et al.  Mesoscale vortices and the paradox of the plankton , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  A. Robinson,et al.  Eddy-induced nutrient supply and new production in the Sargasso Sea , 1997 .

[20]  D. Kobayashi,et al.  Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: characterization of a hotspot in the East China Sea and investigation of mesoscale eddies , 2011 .

[21]  V. Garçon,et al.  Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems , 2008 .

[22]  John Brindley,et al.  Plankton patchiness and its effect on larger-scale productivity , 2003 .

[23]  Shigeki Hosoda,et al.  The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific , 2012, Journal of Oceanography.

[24]  S. B. Blackwell,et al.  Migratory Movements, Depth Preferences, and Thermal Biology of Atlantic Bluefin Tuna , 2001, Science.

[25]  R. Bidigare,et al.  Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean , 2003 .

[26]  O. Maury,et al.  Influence of mesoscale eddies on biological production in the Mozambique Channel: Several contrasted examples from a coupled ocean-biogeochemistry model , 2014 .

[27]  F. d’Ovidio,et al.  Ecological implications of eddy retention in the open ocean: a Lagrangian approach , 2013, Journal of Physics A: Mathematical and Theoretical.

[28]  On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru , 2013 .

[29]  Phillip S. Lobel,et al.  Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters , 1986 .

[30]  G. Madec,et al.  Contribution of mesoscale processes to nutrient budgets in the Arabian Sea , 2011 .

[31]  Variability of Plankton and Plankton Processes on the Mesoscale , 2007 .

[32]  Andreas Oschlies,et al.  Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean , 1998, Nature.

[33]  P. Vélez-Belchí,et al.  Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (western Mediterranean) , 2010 .

[34]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[35]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[36]  S. Erard,et al.  Surface-Generated Mesoscale Eddies Transport Deep-Sea Products from Hydrothermal Vents , .

[37]  Kosei Sasaoka,et al.  Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001 , 2002 .

[38]  Amala Mahadevan,et al.  The Impact of Submesoscale Physics on Primary Productivity of Plankton. , 2016, Annual review of marine science.

[39]  John Marra,et al.  Phytoplankton variability off the Western Australian Coast : Mesoscale eddies and their role in cross-shelf exchange , 2007 .

[40]  P. Killworth,et al.  Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll , 2004 .

[41]  P. Falkowski,et al.  Role of eddy pumping in enhancing primary production in the ocean , 1991, Nature.

[42]  D. M. Nelson,et al.  Production, dissolution, accumulation, and potential export of biogenic silica in a Sargasso Sea mode‐water eddy , 2010 .

[43]  M. Stern Interaction of a uniform wind stress with a geostrophic vortex , 1965 .

[44]  Andrew C. Thomas,et al.  Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska , 2007 .

[45]  D. Chelton,et al.  Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds , 2004, Science.

[46]  M. Brzezinski,et al.  New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy Off Bermuda , 1999 .

[47]  Nicholas R. Bates,et al.  Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms , 2007, Science.

[48]  A. Bakun,et al.  Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage , 2006 .

[49]  G. Flierl,et al.  Some Effects of the Wind on Rings , 1987 .

[50]  G. Madec,et al.  The onset of the Spring Bloom in the MEDOC area: mesoscale spatial variability , 1999 .

[51]  G. Madec,et al.  Response to Comment on "Oceanic Rossby Waves Acting As a `Hay Rake' for Ecosystem Floating By-Products" , 2004, Science.

[52]  W. Jenkins The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[53]  W. Jenkins,et al.  Nitrate flux into the euphotic zone near Bermuda , 1988, Nature.

[54]  W. Walsh,et al.  Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific , 1993 .

[55]  Lee-Lueng Fu,et al.  On the Transition from Profile Altimeter to Swath Altimeter for Observing Global Ocean Surface Topography , 2014 .

[56]  Gurvan Madec,et al.  Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects , 2012 .

[57]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[58]  Vincent Rossi,et al.  The reduction of plankton biomass induced by mesoscale stirring: A modeling study in the Benguela upwelling , 2011, 1112.3760.

[59]  D. M. Nelson,et al.  Biogenic silica at the Bermuda Atlantic Time‐series Study site in the Sargasso Sea: Temporal changes and their inferred controls based on a 15‐year record , 2009 .

[60]  Michel Potier,et al.  Foraging strategy of a top predator in tropical waters: great frigatebirds in the Mozambique Channel , 2004 .

[61]  J. C. Goldman,et al.  Spatial and Temporal Discontinuities of Biological Processes in Pelagic Surface Waters , 1988 .

[62]  M. Altabet,et al.  N‐loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment , 2015 .

[63]  Tracy A. Villareal,et al.  Silica production and the contribution of diatoms to new and primary production in the central North Pacific , 1998 .

[64]  Allan R. Robinson,et al.  Coupled physical and biological modelling of the spring bloom in the North Atlantic (II): three dimensional bloom and post-bloom processes , 1995 .

[65]  Patrice Klein,et al.  The oceanic vertical pump induced by mesoscale and submesoscale turbulence. , 2009, Annual review of marine science.

[66]  Richard G. Williams,et al.  The role of eddies in the isopycnic transfer of nutrients and their impact on biological production , 2000 .

[67]  Scott C. Doney,et al.  Eddy‐driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic , 2003 .

[68]  A. Robinson,et al.  On the theory of advective effects on biological dynamics in the sea. III. The role of turbulence in biological–physical interactions , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  C. Benitez‐Nelson,et al.  Mesoscale physical–biological–biogeochemical linkages in the open ocean : an introduction to the results of the E-Flux and EDDIES programs , 2008 .

[70]  G. Flierl,et al.  Euphausiid invasion/dispersal in gulf stream cold-core rings , 1983 .

[71]  D. Olson,et al.  The concentrating of organisms at fronts: a cold-water fish and a warm-core Gulf Stream ring , 1985 .

[72]  C. Davis,et al.  A three‐axis fast‐tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography , 2005 .

[73]  James C. McWilliams,et al.  Eddy-induced reduction of biological production in eastern boundary upwelling systems , 2011 .

[74]  Francesco d'Ovidio,et al.  Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data , 2007 .

[75]  Sabrina Fossette,et al.  Marine animal behaviour: neglecting ocean currents can lead us up the wrong track , 2006, Proceedings of the Royal Society B: Biological Sciences.

[76]  Mark R. Abbott,et al.  Plankton patchiness: biology in the physical vernacular , 1985 .

[77]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[78]  Martin V. Angel,et al.  Eddies and Biological Processes , 1983 .

[79]  Impact of eddy-driven vertical fluxes on phytoplankton abundance in the euphotic layer , 2011 .

[80]  M. Follows,et al.  Fine scale phytoplankton community structure across the Kuroshio Front , 2014 .

[81]  Adrian P. Martin Phytoplankton patchiness: the role of lateral stirring and mixing , 2003 .

[82]  Antonello Provenzale,et al.  TRANSPORT BY COHERENT BAROTROPIC VORTICES , 1999 .

[83]  Adrian P. Martin,et al.  Bringing physics to life at the submesoscale , 2012 .

[84]  D. McGillicuddy,et al.  Formation of Intrathermocline Lenses by Eddy–Wind Interaction , 2015 .

[85]  V. Garçon,et al.  Rossby wave and ocean color: The cells uplifting hypothesis in the South Atlantic Subtropical Convergence Zone , 2003 .

[86]  Jules S Jaffe,et al.  Swimming Against the Flow: A Mechanism of Zooplankton Aggregation , 2005, Science.

[87]  C. Eden,et al.  Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy , 2009 .

[88]  J. C. Goldman,et al.  Effect of large marine diatoms growing at low light on episodic new production , 2003 .

[89]  F. Marsac,et al.  Influence of mesoscale eddies on spatial structuring of top predators’ communities in the Mozambique Channel , 2010 .

[90]  E. Kunze Near-Inertial Wave Propagation In Geostrophic Shear , 1985 .

[91]  W. J. Jenkins,et al.  Seasonal oxygen cycling and primary production in the Sargasso Sea , 1985 .

[92]  Nicolas Gruber,et al.  Observing Biogeochemical Cycles at Global Scales With Profiling Floats and Gliders Prospects for a Global Array , 2009 .

[93]  J. Yoder,et al.  Pumping of nutrients to ocean surface waters by the action of propagating planetary waves , 2001, Nature.

[94]  Dennis J. McGillicuddy Eddies Masquerade as Planetary Waves , 2011, Science.

[95]  Ken O. Buesseler,et al.  Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS) , 2003 .

[96]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[97]  D. Chelton,et al.  Global observations of nonlinear mesoscale eddies , 2011 .

[98]  Y. Sugimori,et al.  Investigation of mesoscale fronts, eddies and upwelling in the China Seas with satellite data , 1995 .

[99]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[100]  A. Oschlies Eddies and Upper‐Ocean Nutrient Supply , 2013 .

[101]  Adrian P. Martin,et al.  Spatially implicit plankton population models: Transient spatial variability. , 2008, Journal of theoretical biology.

[102]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[103]  Application of the Robinson biodynamical theory to turbulence , 2011 .

[104]  S. Doney,et al.  Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: Biological production and community structure , 2002 .

[105]  E. Venrick Mesoscale patterns of chlorophyll a in the Central North Pacific , 1990 .

[106]  D. Marshall Subduction of water masses in an eddying ocean , 1997 .

[107]  M. Follows,et al.  The Ekman transfer of nutrients and maintenance of new production over the North Atlantic , 1998 .

[108]  A. Oschlies Can eddies make ocean deserts bloom? , 2002 .

[109]  P. Xiu,et al.  Modeled biogeochemical responses to mesoscale eddies in the South China Sea , 2011 .

[110]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[111]  F. Muller‐Karger,et al.  Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico , 2012 .

[112]  Jia Wang,et al.  Enhancement of eddy-Ekman pumping inside anticyclonic eddies with wind-parallel extension: Satellite observations and numerical studies in the South China Sea , 2014 .

[113]  J. Knauss Introduction to physical oceanography , 1978 .

[114]  Gurvan Madec,et al.  The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model , 1998 .

[115]  H. Weimerskirch,et al.  Frigatebird behaviour at the ocean–atmosphere interface: integrating animal behaviour with multi-satellite data , 2012, Journal of The Royal Society Interface.

[116]  L. Legendre,et al.  Towards Dynamic Biological Oceanography and Limnology , 1984 .

[117]  H. Loisel,et al.  Oceanic Rossby Waves Acting As a "Hay Rake" for Ecosystem Floating By-Products , 2003, Science.

[118]  D. Chelton,et al.  Global Observations of Oceanic Rossby Waves , 1996, Science.

[119]  P. Klein,et al.  Mesoscale heterogeneity of the wind-driven mixed layer: Influence of a quasigeostrophic flow , 1988 .

[120]  V. Strass,et al.  Chlorophyll patchiness caused by mesoscale upwelling at fronts , 1992 .

[121]  A. Robinson On the theory of advective effects on biological dynamics in the sea , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[122]  M. Follows,et al.  Dispersal, eddies, and the diversity of marine phytoplankton , 2013 .

[123]  Christophe Guinet,et al.  Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current , 2015, Progress in Oceanography.

[124]  Lisa Dresner,et al.  Ocean Dynamics And The Carbon Cycle Principles And Mechanisms , 2016 .

[125]  Adrian P. Martin,et al.  On estimates for the vertical nitrate flux due to eddy pumping , 2003 .

[126]  H. Hunt,et al.  Marine animal behaviour in a high CO2 ocean , 2015 .

[127]  David A. Siegel,et al.  Quantifying connectivity in the coastal ocean with application to the Southern California Bight , 2009 .

[128]  Coralie Perruche,et al.  Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence , 2011 .

[129]  W. Dewar Mixed layers in gulf stream rings , 1986 .

[130]  Ricardo M Letelier,et al.  Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre , 2000 .

[131]  J. W. Zhang,et al.  Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange , 2000 .

[132]  P. Ressler,et al.  Cetacean habitat in the northern oceanic Gulf of Mexico , 2002 .

[133]  Marina Lévy,et al.  The influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions , 2013 .

[134]  Michael J. Behrenfeld,et al.  Regional variations in the influence of mesoscale eddies on near‐surface chlorophyll , 2014 .

[135]  D. M. Nelson,et al.  Enhanced near-surface nutrient availability and new production resulting from the frictional decay of a Gulf Stream warm-core ring , 1989 .

[136]  Paolo Cipollini,et al.  Rossby waves detected in global ocean colour data , 2001 .

[137]  Glenn R. Flierl,et al.  Particle motions in large-amplitude wave fields , 1981 .

[138]  C. L. Leonard,et al.  Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii , 2003 .

[139]  M. Lévy,et al.  Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability? , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[140]  Adrian P. Martin,et al.  On the role of biological dynamics in plankton patchiness at the mesoscale: an example from the eastern North Atlantic Ocean , 2003 .

[141]  Mirtha Lewis,et al.  Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence , 2006 .

[142]  David A. Siegel,et al.  Bio‐optical footprints created by mesoscale eddies in the Sargasso Sea , 2011 .

[143]  A. Provenzale,et al.  Impact of the spatiotemporal variability of the nutrient flux on primary productivity in the ocean , 2005 .

[144]  P. Dutton,et al.  Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean , 2004 .

[145]  B. Block,et al.  Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico , 2010, PloS one.

[146]  C. Moulin,et al.  A whirling ecosystem in the equatorial Atlantic , 2002 .

[147]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[148]  P. Peterson,et al.  Satellite and in situ observations of the bio-optical signatures of two mesoscale eddies in the Sargasso Sea , 2008 .

[149]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[150]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[151]  Y. Amitai,et al.  Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring , 2011 .

[152]  D. Chelton,et al.  Global observations of large oceanic eddies , 2007 .

[153]  G. Flierl,et al.  Prediction of phytoplankton growth in response to the frictional decay of a warm‐core ring , 1986 .

[154]  T. Bibby,et al.  Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific , 2010 .

[155]  G. Lavik,et al.  An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone , 2012 .

[156]  P. Niiler On the Ekman divergence in an oceanic jet , 1969 .

[157]  D. Chelton,et al.  The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll , 2011, Science.

[158]  D. Chelton,et al.  Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies , 2013 .

[159]  C. Guinet,et al.  Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal , 2010 .

[160]  Larry W. O'Neill,et al.  Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping , 2015 .

[161]  H. Weimerskirch,et al.  Seabird associations with mesoscale eddies: the subtropical Indian Ocean , 2006 .

[162]  J. McWilliams The Nature and Consequences of Oceanic Eddies , 2013 .

[163]  John Horne,et al.  Mesoscale Eddies Are Oases for Higher Trophic Marine Life , 2012, PloS one.

[164]  M. Kahru,et al.  Eddies enhance biological production in the Weddell‐Scotia Confluence of the Southern Ocean , 2007 .

[165]  C. Bost,et al.  Movements of foraging king penguins through marine mesoscale eddies , 2007, Proceedings of the Royal Society B: Biological Sciences.

[166]  Joaquín Tintoré,et al.  Mesoscale vertical motion and the size structure of phytoplankton in the ocean , 2001, Nature.

[167]  Michio J. Kishi,et al.  Effects of interaction between two warm-core rings on phytoplankton distribution , 1994 .

[168]  Michel Rixen,et al.  Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic , 2005, Nature.

[169]  M. Follows,et al.  Physical Transport of Nutrients and the Maintenance of Biological Production , 2003 .

[170]  Ken Yoda,et al.  Foraging spots of streaked shearwaters in relation to ocean surface currents as identified using their drift movements , 2014 .

[171]  Patrice Klein,et al.  Impact of the small-scale elongated filaments on the oceanic vertical pump. , 2006 .

[172]  David E. Richardson,et al.  Larval assemblages of large and medium-sized pelagic species in the Straits of Florida , 2010 .

[173]  Adrian P. Martin,et al.  Horizontal dispersion within an anticyclonic mesoscale eddy , 2001 .

[174]  T. Mooreb,et al.  The Leeuwin Current and its eddies : An introductory overview , 2007 .

[175]  J. Greenwood,et al.  Impact of eddies on surface chlorophyll in the South Indian Ocean , 2014 .

[176]  J. Paul,et al.  Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons , 2007 .

[177]  A. Mahadevan,et al.  Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms" , 2008, Science.

[178]  R. W. Griffiths,et al.  The Mesoscale Structure of the Leeuwin Current: A Comparison of Laboratory Models and Satellite Imagery , 1991 .

[179]  M. Follows,et al.  Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence , 2014 .

[180]  G. Madec,et al.  On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem , 2010 .