Dynamic modeling of microbial cell populations.

[1]  H. M. Tsuchiya,et al.  Dynamics of Microbial Cell Populations , 1966 .

[2]  J. E. Bailey,et al.  Bacterial population dynamics in batch and continuous-flow microbial reactors , 1981 .

[3]  M M Domach,et al.  A finite representation model for an asynchronous culture of E. coli , 1984, Biotechnology and bioengineering.

[4]  M M Ataai,et al.  Simulation of CFSTR through development of a mathematical model for anaerobic growth of Escherichia coli cell population , 1985, Biotechnology and bioengineering.

[5]  J. Nielsen,et al.  Bioreaction Engineering Principles , 1994, Springer US.

[6]  J. Nielsen,et al.  Population balance models of autonomous microbial oscillations. , 1995, Journal of biotechnology.

[7]  A G Fredrickson,et al.  Multistaged corpuscular models of microbial growth: Monte Carlo simulations. , 1995, Bio Systems.

[8]  S. Shioya,et al.  Cell cycle dependency of rice α-amylase production in a recombinant yeast , 1997 .

[9]  B. Futcher,et al.  Cell cycle synchronization. , 1999, Methods in cell science : an official journal of the Society for In Vitro Biology.

[10]  M L Shuler,et al.  Single-cell models: promise and limitations. , 1999, Journal of biotechnology.

[11]  J. Villadsen,et al.  On the use of population balances , 1999 .

[12]  Sune Danø,et al.  Sustained oscillations in living cells , 1999, Nature.

[13]  Friedrich Srienc,et al.  Cytometric data as the basis for rigorous models of cell population dynamics , 1999 .

[14]  Prodromos Daoutidis,et al.  Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration , 1999 .

[15]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[16]  Michael A. Henson,et al.  Model predictive control of continuous yeast bioreactors using cell population balance models , 2000 .

[17]  [Mathematical modeling of population dynamics of unstable plasmid-containing bacteria during continuous cultivation in a chemostat]. , 2000, Biofizika.

[18]  Reinhart Heinrich,et al.  Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. , 2000, The Biochemical journal.

[19]  Reinhart Heinrich,et al.  Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. , 2000, Biophysical journal.

[20]  Barbara M. Bakker,et al.  How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. , 2000, Biophysical journal.

[21]  U. Stockar,et al.  Modeling of oscillating cultivations of Saccharomyces cerevisiae: Identification of population structure and expansion kinetics based on on-line measurements , 2000 .

[22]  Gülnur Birol,et al.  Frequency analysis of autonomously oscillating yeast cultures , 2000 .

[23]  S. De Monte,et al.  Synchronization of glycolytic oscillations in a yeast cell population. , 2002, Faraday discussions.

[24]  Thomas Scheper,et al.  Flow cytometry in biotechnology , 2001, Applied Microbiology and Biotechnology.

[25]  Prodromos Daoutidis,et al.  Numerical solution of multi-variable cell population balance models. III. Finite element methods , 2001 .

[26]  F. Srienc,et al.  Cell cycle-dependent protein secretion by Saccharomyces cerevisiae. , 2001, Biotechnology and bioengineering.

[27]  P. Daoutidis,et al.  Numerical solution of multi-variable cell population balance models. II. Spectral methods , 2001 .

[28]  G. Birol,et al.  Multiple stable states and hysteresis in continuous, oscillating cultures of budding yeast. , 2001, Biotechnology and bioengineering.

[29]  J. King,et al.  Mathematical modelling of quorum sensing in bacteria. , 2001, IMA journal of mathematics applied in medicine and biology.

[30]  F. Hynne,et al.  Full-scale model of glycolysis in Saccharomyces cerevisiae. , 2001, Biophysical chemistry.

[31]  Marta Ginovart,et al.  INDISIM, an individual-based discrete simulation model to study bacterial cultures. , 2002, Journal of theoretical biology.

[32]  Prodromos Daoutidis,et al.  Dynamics and Control of Cell Populations in Continuous Bioreactors , 2002 .

[33]  Michael A. Henson,et al.  Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors , 2002 .

[34]  S. J. Parulekar,et al.  A morphologically structured model for penicillin production , 2002, Biotechnology and bioengineering.

[35]  Matthias Reuss,et al.  Cell population modelling of yeast glycolytic oscillations. , 2002, The Biochemical journal.

[36]  Prodromos Daoutidis,et al.  Nonlinear productivity control using a multi-staged cell population balance model , 2002 .

[37]  Prashant Mhaskar,et al.  Cell Population Modeling and Parameter Estimation for Continuous Cultures of Saccharomyces cerevisiae , 2002, Biotechnology progress.

[38]  W Gujer,et al.  Microscopic versus macroscopic biomass models in activated sludge systems. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[39]  A. G. Fredrickson,et al.  A new set of population balance equations for microbial and cell cultures , 2002 .

[40]  Michael A. Henson,et al.  Dynamics analysis of an age distribution model of oscillating yeast cultures , 2002 .

[41]  Michael A. Henson,et al.  Dynamic modeling and control of yeast cell populations in continuous biochemical reactors , 2003, Comput. Chem. Eng..

[42]  Michael A. Henson,et al.  Nonlinear model reduction for dynamic analysis of cell population models , 2003 .

[43]  Friedrich Srienc,et al.  Automated flow cytometry for acquisition of time‐dependent population data , 2003, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[44]  Prodromos Daoutidis,et al.  Simulation of population dynamics using continuous-time finite-state Markov chains , 2003, Comput. Chem. Eng..