DCore: Integrated DMFT software for correlated electrons

We present a new open-source program, DCore, that implements dynamical mean-field theory (DMFT). DCore features a user-friendly interface based on text and HDF5 files. It allows DMFT calculations of tight-binding models to be performed on predefined lattices as well as ab initio models constructed by external density functional theory codes through the Wannier90 package. Furthermore, DCore provides interfaces to many advanced quantum impurity solvers such as quantum Monte Carlo and exact diagonalization solvers. This paper details the structure and usage of DCore and shows some applications.

[1]  Vijay Singh,et al.  DMFTwDFT: An open-source code combining Dynamical Mean Field Theory with various density functional theory packages , 2020, Comput. Phys. Commun..

[2]  K. Yoshimi,et al.  Sparse sampling and tensor network representation of two-particle Green's functions , 2019, SciPost Physics.

[3]  Hiroshi Shinaoka,et al.  Efficient implementation of the continuous-time interaction-expansion quantum Monte Carlo method , 2018, Comput. Phys. Commun..

[4]  Nicola Marzari,et al.  Wannier90 as a community code: new features and applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Hiroshi Shinaoka,et al.  SpM: Sparse modeling tool for analytic continuation of imaginary-time Green's function , 2019, Comput. Phys. Commun..

[6]  Y. Nomura,et al.  Strong-coupling formula for momentum-dependent susceptibilities in dynamical mean-field theory , 2018, Physical Review B.

[7]  Karsten Held,et al.  w2dynamics: Local one- and two-particle quantities from dynamical mean field theory , 2018, Comput. Phys. Commun..

[8]  G. Pizzi,et al.  Wannier90 as a community code: new features and applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Naoki Kawashima,et al.  Quantum lattice model solver HΦ , 2017, Comput. Phys. Commun..

[11]  Hiroshi Shinaoka,et al.  Continuous-time hybridization expansion quantum impurity solver for multi-orbital systems with complex hybridizations , 2016, Comput. Phys. Commun..

[12]  X. Chen,et al.  Updated core libraries of the ALPS project , 2016, Comput. Phys. Commun..

[13]  Emanuel Gull,et al.  Implementation of the maximum entropy method for analytic continuation , 2016, Comput. Phys. Commun..

[14]  Xiaoyu Deng,et al.  TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials , 2015, Comput. Phys. Commun..

[15]  Olivier Parcollet,et al.  TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems , 2015, Comput. Phys. Commun..

[16]  Hartmut Hafermann,et al.  TRIQS: A toolbox for research on interacting quantum systems , 2015, Comput. Phys. Commun..

[17]  Z. Fisk,et al.  Tuning electronic correlations in transition metal pnictides: Chemistry beyond the valence count , 2015, 1502.04565.

[18]  Li Huang,et al.  iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit , 2017, Comput. Phys. Commun..

[19]  R. Sakuma,et al.  Consistent description of the electronic structure of SrVO$_{3}$ within GW+DMFT , 2013, 1307.6361.

[20]  Hartmut Hafermann,et al.  Efficient implementation of the continuous-time hybridization expansion quantum impurity solver , 2013, Comput. Phys. Commun..

[21]  G. Kresse,et al.  Comparing quasiparticle GW+DMFT and LDA+DMFT for the test bed material SrVO 3 , 2012, 1211.1324.

[22]  Yusuke Nomura,et al.  Effective on-site interaction for dynamical mean-field theory , 2012, 1205.2836.

[23]  Markus Aichhorn,et al.  Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO , 2011, 1104.4361.

[24]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[25]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[26]  G. Kotliar,et al.  Strength of correlations in electron- and hole-doped cuprates , 2010, 1005.3095.

[27]  M. Troyer,et al.  Spin freezing transition and non-Fermi-liquid self-energy in a three-orbital model. , 2008, Physical review letters.

[28]  G. Kotliar,et al.  Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.

[29]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[30]  A. Millis,et al.  Hybridization expansion impurity solver: General formulation and application to Kondo lattice and two-orbital models , 2006, cond-mat/0607136.

[31]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[32]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[33]  D. E. Kondakov,et al.  Momentum-resolved spectral functions of SrVO 3 calculated by LDA + DMFT , 2005, cond-mat/0508313.

[34]  T. Pruschke,et al.  Dynamical Mean-Field Theory and Its Applications to Real Materials , 2004, cond-mat/0408266.

[35]  A. Rubtsov,et al.  Continuous-time quantum Monte Carlo method for fermions: Beyond auxiliary field framework , 2004, cond-mat/0411344.

[36]  Taisuke Ozaki,et al.  Variationally optimized atomic orbitals for large-scale electronic structures , 2003 .

[37]  R. Scalettar,et al.  Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. , 2001, Physical review letters.

[38]  G. Kotliar,et al.  Correlated electrons in δ-plutonium within a dynamical mean-field picture , 2001, Nature.

[39]  G. Kotliar,et al.  Correlated electrons in delta-plutonium within a dynamical mean-field picture. , 2001, Nature.

[40]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[41]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[42]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.