Effects of Mn addition on the microstructures and mechanical properties of the Mg-15Gd-1Zn alloy

[1]  Yujuan Wu,et al.  Effects of Zr and Mn additions on formation of LPSO structure and dynamic recrystallization behavior of Mg-15Gd-1Zn alloy , 2017 .

[2]  Jun Yu Li,et al.  Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy , 2016 .

[3]  Kai Wen,et al.  Precipitation behavior of 14H-LPSO structure in Mg–12Gd–2Er–1Zn–0.6Zr Alloy , 2016, Rare Metals.

[4]  Xuefei Huang,et al.  On the crystallographic features of Mn precipitates in a Mg–Sn–Mn alloy , 2015 .

[5]  Dongyang Li,et al.  Stability and formation of long period stacking order structure in Mg-based ternary alloys , 2015 .

[6]  Yuman Zhu,et al.  On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in Mg-Y-Zn Alloys , 2014, Metallurgical and Materials Transactions A.

[7]  Zi-kui Liu,et al.  Effects of Alloying Elements on Stacking Fault Energies and Electronic Structures of Binary Mg Alloys: A First-Principles Study , 2014 .

[8]  Ding Li,et al.  Effects of Mn on the microstructure and mechanical properties of long period stacking ordered Mg95Zn2.5Y2.5 alloy , 2013 .

[9]  S. Ogata,et al.  Effect of alloying elements on in-plane ordering and disordering of solute clusters in Mg-based long-period stacking ordered structures: A first-principles analysis , 2013 .

[10]  Liu Guojun,et al.  Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations , 2013 .

[11]  Song-Jeng Huang,et al.  High-strength and good-ductility Mg–RE–Zn–Mn magnesium alloy with long-period stacking ordered phase , 2013 .

[12]  K. Kurzydłowski,et al.  Generalized stacking fault energy in magnesium alloys: Density functional theory calculations , 2012 .

[13]  M. Celikin,et al.  Effect of manganese on the creep behavior of magnesium and the role of α-Mn precipitation during creep , 2012 .

[14]  E. Abe,et al.  The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges , 2012 .

[15]  F. Pan,et al.  Influence of stacking fault energy on formation of long period stacking ordered structures in Mg–Zn–Y–Zr alloys , 2011 .

[16]  K. Hagihara,et al.  Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy , 2011 .

[17]  W. Ding,et al.  Effect of Zn/Gd Ratio on Phase Constitutions in Mg‐Zn‐Gd Alloys , 2011 .

[18]  Kai Song,et al.  Effect of Mole Ratio of Y to Zn on Phase Constituent of Mg-Zn-Zr-Y Alloys , 2011 .

[19]  J. Park,et al.  Microstructure and tensile properties of Mg–Zn–Gd casting alloys , 2011 .

[20]  W. Ding,et al.  The relationship between (Mg,Zn)3RE phase and 14H-LPSO phase in Mg-Gd-Y-Zn-Zr alloys solidified at different cooling rates , 2011 .

[21]  G. Garcés,et al.  Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg–Y2X–ZnX alloys , 2011, Journal of Materials Science.

[22]  Xiuliang Ma,et al.  Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure , 2010 .

[23]  Yuman Zhu,et al.  The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys , 2010 .

[24]  Suveen N. Mathaudhu,et al.  First-principles Calculations of Twin-boundary and Stacking-fault Energies in Magnesium , 2010 .

[25]  Xiaozhi Wu,et al.  Generalized-stacking-fault energy and surface properties for HCP metals: A first-principles study , 2010 .

[26]  W. Ding,et al.  A systematic investigation of stacking faults in magnesium via first-principles calculation , 2009 .

[27]  E. Han,et al.  Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys , 2009 .

[28]  J. Meng,et al.  Influence of Zn content on the microstructure and mechanical properties of extruded Mg–5Y–4Gd–0.4Zr alloy , 2009 .

[29]  W. Ding,et al.  The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K , 2009 .

[30]  W. Ding,et al.  Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg-Gd-Zn-Zr alloys , 2009 .

[31]  Bin Wang,et al.  Effect of Zr, Mn and Sc additions on the grain size of Mg–Gd alloy , 2009 .

[32]  K. Hono,et al.  Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy , 2008 .

[33]  Yurong Wu,et al.  Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation , 2008 .

[34]  E. Han,et al.  Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions , 2008 .

[35]  M. Nishijima,et al.  Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature , 2007 .

[36]  Y. Kawamura,et al.  Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure , 2007 .

[37]  T. Ohkubo,et al.  Effect of Zn additions on the age-hardening of Mg-2.0gd-1.2Y-0.2Zr alloys , 2007 .

[38]  Xiang Gao,et al.  Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn , 2005 .

[39]  Y. Kawamura,et al.  Mechanical properties of warm-extruded Mg¿Zn¿Gd alloy with coherent 14H long periodic stacking ordered structure precipitate , 2005 .

[40]  J. Gröbner,et al.  Experimental investigation and thermodynamic calculation of binary Mg-Mn phase equilibria , 2005 .

[41]  M. Mabuchi,et al.  Novel equilibrium two phase Mg alloy with the long-period ordered structure , 2004 .

[42]  T. Kimura,et al.  Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys , 2003 .

[43]  K. Amiya,et al.  Local structures around Zn and Y in the melt-quenched Mg97Zn1Y2 ribbon , 2003 .

[44]  L. Rokhlin Magnesium Alloys Containing Rare Earth Metals: Structure and Properties , 2003 .

[45]  A. Inoue,et al.  Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM , 2002 .

[46]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[47]  Xuejun Jin,et al.  Thermodynamic prediction ofMs in Fe−Mn−Si shape memory alloys associated with fcc (γ) → hcp (ε) martensitic transformation , 1999 .

[48]  T. Hsu,et al.  Effect of stacking fault probability on γ–ε martensitic transformation and shape memory effect in Fe–Mn–Si based alloys , 1998 .

[49]  L. Rokhlin,et al.  Effect of alloying on the properties of Mg−Gd alloys , 1979 .

[50]  R. E. Schramm,et al.  Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and microstrain , 1974 .