Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis

A reaction-diffusion predator-prey system with prey-taxis and predator-taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing prey and prey evading predators. The spatial pattern formation induced by the prey-taxis and predator-taxis is characterized by the Turing type linear instability of homogeneous state and bifurcation theory. It is shown that both attractive prey-taxis and repulsive predator-taxis compress the spatial patterns, while repulsive prey-taxis and attractive predator-taxis help to generate spatial patterns. Our results are applied to the Holling-Tanner predator-prey model to demonstrate the pattern formation mechanism.

[1]  Junjie Wei,et al.  Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of Cima chemical reactions , 2013 .

[2]  T. Hillen,et al.  Pattern formation in prey-taxis systems , 2009, Journal of biological dynamics.

[3]  Paul Deuring,et al.  An initial-boundary-value problem for a certain density-dependent diffusion system , 1987 .

[4]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[5]  Junjie Wei,et al.  Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems , 2016 .

[6]  Jinfeng Wang,et al.  Bifurcation analysis in a diffusive Segel–Jackson model , 2014 .

[7]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[8]  Junping Shi,et al.  Dynamics and pattern formation in diffusive predator-prey models with predator-taxis , 2020, Electronic Journal of Differential Equations.

[9]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[10]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[11]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[12]  Hai-Yang Jin,et al.  Global stability of prey-taxis systems , 2017 .

[13]  Junping Shi,et al.  On global bifurcation for quasilinear elliptic systems on bounded domains , 2009 .

[14]  Yang Song,et al.  Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems , 2017, J. Nonlinear Sci..

[15]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[16]  Yi Zhu,et al.  The study of global stability of a diffusive Holling-Tanner predator-prey model , 2016, Appl. Math. Lett..

[17]  Wendi Wang,et al.  Global bifurcation of solutions for a predator–prey model with prey‐taxis , 2015 .

[18]  G. Mittelbach,et al.  Predator Avoidance and Community Structure: Interactions among Piscivores, Planktivores, and Plankton , 1990 .

[19]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[20]  C. Cosner Reaction-diffusion-advection models for the effects and evolution of dispersal , 2013 .

[21]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[22]  Ping Liu,et al.  Pattern Formation of the Attraction-Repulsion Keller-Segel System , 2013 .

[23]  M. Winkler Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation , 2017 .

[24]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[25]  Michael Winkler,et al.  The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L1 , 2019, Advances in Nonlinear Analysis.

[26]  Rui Peng,et al.  Global stability of the equilibrium of a diffusive Holling-Tanner prey-predator model , 2007, Appl. Math. Lett..

[27]  James T. Tanner,et al.  THE STABILITY AND THE INTRINSIC GROWTH RATES OF PREY AND PREDATOR POPULATIONS , 1975 .

[28]  Junping Shi,et al.  Persistence and Bifurcation of Degenerate Solutions , 1999 .

[29]  Boying Wu,et al.  Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis ✩ , 2016 .

[30]  Mostafa Bendahmane,et al.  A reaction–diffusion system modeling predator–prey with prey-taxis , 2008 .

[31]  Shanshan Chen,et al.  Global stability in a diffusive Holling-Tanner predator-prey model , 2012, Appl. Math. Lett..

[32]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[33]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[34]  Shanshan Chen,et al.  Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey System , 2012, Int. J. Bifurc. Chaos.

[35]  Junping Shi,et al.  CROSS-DIFFUSION INDUCED INSTABILITY AND STABILITY IN REACTION-DIFFUSION SYSTEMS ⁄ , 2011 .

[36]  J. S. Suffern,et al.  Vertical migration in zooplankton as a predator avoidance mechanism1 , 1976 .

[37]  Youshan Tao,et al.  Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis , 2010 .

[38]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[39]  R. K. Upadhyay,et al.  Pattern Formation in a Cross-Diffusive Holling-Tanner Model , 2012 .

[40]  Tian Xiang,et al.  Global dynamics for a diffusive predator–prey model with prey-taxis and classical Lotka–Volterra kinetics , 2018 .

[41]  Junjie Wei,et al.  Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey , 2011 .

[42]  Yihong Du,et al.  Allee effect and bistability in a spatially heterogeneous predator-prey model , 2007 .

[43]  Thilo Gross,et al.  Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. , 2007, Journal of theoretical biology.