Identification of biomarkers for glycaemic deterioration in type 2 diabetes

[1]  Bjarni V. Halldórsson,et al.  Large-scale integration of the plasma proteome with genetics and disease , 2021, Nature Genetics.

[2]  L. Groop,et al.  Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study , 2021, Diabetes.

[3]  L. Groop,et al.  Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study , 2021, Diabetologia.

[4]  O. Melander,et al.  A plasma lipid signature predicts incident coronary artery disease. , 2021, International journal of cardiology.

[5]  J. Danesh,et al.  A cross-platform approach identifies genetic regulators of human metabolism and health , 2021, Nature Genetics.

[6]  M. Jaeger,et al.  CRELD1 modulates homeostasis of the immune system in mice and humans , 2020, Nature Immunology.

[7]  T. Fukuda,et al.  SPOCK1 induces adipose tissue maturation: New insights into the function of SPOCK1 in metabolism. , 2020, Biochemical and biophysical research communications.

[8]  C. Bryant,et al.  Preventing pores and inflammation , 2020, Science.

[9]  Shahzad Khan,et al.  Current use of cardiac biomarkers in various heart conditions. , 2020, Endocrine, metabolic & immune disorders drug targets.

[10]  R. Ozaki,et al.  Obesity, clinical, and genetic predictors for glycemic progression in Chinese patients with type 2 diabetes: A cohort study using the Hong Kong Diabetes Register and Hong Kong Diabetes Biobank , 2020, PLoS medicine.

[11]  B. Tang,et al.  Research advances on neurite outgrowth inhibitor B receptor , 2020, Journal of cellular and molecular medicine.

[12]  M. McCarthy,et al.  Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) , 2020, Diabetes Care.

[13]  M. Moradzadeh,et al.  Inflammation, diet, and type 2 diabetes: a mini-review , 2020, Journal of immunoassay & immunochemistry.

[14]  J. Lamb,et al.  Circulating Protein Signatures and Causal Candidates for Type 2 Diabetes , 2020, Diabetes.

[15]  C. Palmer,et al.  The impact of phenotype, ethnicity and genotype on progression of type 2 diabetes mellitus , 2020, Endocrinology, diabetes & metabolism.

[16]  S. O’Rahilly,et al.  GDF15 mediates the effects of metformin on body weight and energy balance , 2019, Nature.

[17]  M. A. Surma,et al.  Plasma Lipidome and Prediction of Type 2 Diabetes in the Population-Based Malmö Diet and Cancer Cohort , 2019, Diabetes Care.

[18]  E. Ingelsson,et al.  Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach , 2019, Upsala journal of medical sciences.

[19]  T. Ahluwalia,et al.  Editorial: Novel Biomarkers for Type 2 Diabetes , 2019, Front. Endocrinol..

[20]  Pietro Della Briotta Parolo,et al.  Genetic architecture of human plasma lipidome and its link to cardiovascular disease , 2019, Nature Communications.

[21]  T. Suvitaival,et al.  Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients , 2019, bioRxiv.

[22]  V. W. Tsai,et al.  GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS , 2019, International Journal of Obesity.

[23]  G. Bray,et al.  GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans , 2019, Cell Metabolism.

[24]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[25]  Stephen Burgess,et al.  Genomic atlas of the human plasma proteome , 2018, Nature.

[26]  J. Marioni,et al.  Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets , 2018, Molecular systems biology.

[27]  Hongzhong Zhang,et al.  Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions , 2018, Data in brief.

[28]  Blair H. Smith,et al.  Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) , 2017, International journal of epidemiology.

[29]  R. Baron,et al.  Metformin Affects Cortical Bone Mass and Marrow Adiposity in Diet‐Induced Obesity in Male Mice , 2017, Endocrinology.

[30]  T. Cash-Mason,et al.  GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates , 2017, Nature Medicine.

[31]  G. Nijpels,et al.  The Hoorn Diabetes Care System (DCS) cohort. A prospective cohort of persons with type 2 diabetes treated in primary care in the Netherlands , 2017, BMJ Open.

[32]  S. Hazen,et al.  Myeloperoxidase‐mediated protein lysine oxidation generates 2‐aminoadipic acid and lysine nitrile in vivo , 2017, Free radical biology & medicine.

[33]  Jihong Han,et al.  Nogo‐B receptor deficiency increases liver X receptor alpha nuclear translocation and hepatic lipogenesis through an adenosine monophosphate–activated protein kinase alpha–dependent pathway , 2016, Hepatology.

[34]  Inês Barroso,et al.  Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis , 2016, PLoS medicine.

[35]  Jean Tichet,et al.  Impact of statistical models on the prediction of type 2 diabetes using non-targeted metabolomics profiling , 2016, Molecular metabolism.

[36]  G. Zhai,et al.  Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals , 2016, Nutrition & Metabolism.

[37]  L. Groop,et al.  α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of Impaired Glucose Tolerance , 2016, Diabetes Care.

[38]  Chunlei Wu,et al.  BioGPS: building your own mash-up of gene annotations and expression profiles , 2015, Nucleic Acids Res..

[39]  P. Rieu,et al.  Homocitrulline: a new marker for differentiating acute from chronic renal failure , 2016, Clinical chemistry and laboratory medicine.

[40]  M. A. Surma,et al.  An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids , 2015, European journal of lipid science and technology : EJLST.

[41]  Mei-wan Chen,et al.  Function of Nogo‐A/Nogo‐A Receptor in Alzheimer's Disease , 2015, CNS neuroscience & therapeutics.

[42]  Alan Bridge,et al.  The SwissLipids knowledgebase for lipid biology , 2015, Bioinform..

[43]  Dale L. Greiner,et al.  Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets , 2015, Diabetes.

[44]  H. Chung,et al.  GDF15 Is a Novel Biomarker for Impaired Fasting Glucose , 2014, Diabetes & metabolism journal.

[45]  C. Lynch,et al.  Branched-chain amino acids in metabolic signalling and insulin resistance , 2014, Nature Reviews Endocrinology.

[46]  M. Prentki,et al.  Defective insulin secretory response to intravenous glucose in C57Bl/6J compared to C57Bl/6N mice , 2014, Molecular metabolism.

[47]  C. Jennison,et al.  Clinical and Genetic Determinants of Progression of Type 2 Diabetes: A DIRECT Study , 2014, Diabetes Care.

[48]  J. Licinio,et al.  Lipidomic profiling before and after Roux-en-Y gastric bypass in obese patients with diabetes , 2013, The Pharmacogenomics Journal.

[49]  Ming-Huei Chen,et al.  A genome-wide association study of the human metabolome in a community-based cohort. , 2013, Cell metabolism.

[50]  Michael Schroeder,et al.  LipidXplorer: A Software for Consensual Cross-Platform Lipidomics , 2012, PloS one.

[51]  L. Meijer,et al.  Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. , 2011, Journal of medicinal chemistry.

[52]  F. Llorens,et al.  Emerging functions of myelin‐associated proteins during development, neuronal plasticity, and neurodegeneration , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[53]  M. Schwab Functions of Nogo proteins and their receptors in the nervous system , 2010, Nature Reviews Neuroscience.

[54]  Christian Gieger,et al.  Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting , 2010, PloS one.

[55]  M. Tobin,et al.  DataSHIELD: resolving a conflict in contemporary bioscience—performing a pooled analysis of individual-level data without sharing the data , 2010, International journal of epidemiology.

[56]  World Medical Association (WMA) Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects , 2009, Journal of the Indian Medical Association.

[57]  M. Wajner,et al.  Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats , 2009, Brain Research.

[58]  Torben Hansen,et al.  Development of a Type 2 Diabetes Risk Model From a Panel of Serum Biomarkers From the Inter99 Cohort , 2009, Diabetes Care.

[59]  Boguslaw Stec,et al.  The Fas/FADD death domain complex structure unravels signaling by receptor clustering , 2008, Nature.

[60]  N. Scrima,et al.  HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1 , 2008, FEBS letters.

[61]  J. Schölmerich,et al.  Metformin reduces cellular lysophosphatidylcholine and thereby may lower apolipoprotein B secretion in primary human hepatocytes. , 2008, Biochimica et biophysica acta.

[62]  J. L. San Millán,et al.  The decrease in serum IL-18 levels after bariatric surgery in morbidly obese women is a time-dependent event , 2007, Obesity surgery.

[63]  V. Gudnason,et al.  Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. , 2007, American journal of epidemiology.

[64]  C. Dinarello,et al.  Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor , 2006, Proceedings of the National Academy of Sciences.

[65]  Shizuo Akira,et al.  Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance , 2006, Nature Medicine.

[66]  J. Leahy,et al.  Mechanisms of compensatory beta-cell growth in insulin-resistant rats: roles of Akt kinase. , 2005, Diabetes.

[67]  Y. Benjamini,et al.  False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters , 2005 .

[68]  M. Brosnan,et al.  Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. , 2004, Canadian journal of physiology and pharmacology.

[69]  J. Relton,et al.  LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex , 2004, Nature Neuroscience.

[70]  G. Stark,et al.  SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling , 2003, Nature Immunology.

[71]  Alessandro Pontillo,et al.  Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. , 2003, JAMA.

[72]  M. Tsang,et al.  The Combination of Soluble IL-18Rα and IL-18Rβ Chains Inhibits IL-18-Induced IFN-γ , 2002 .

[73]  J. Sjövall,et al.  Altered bile acid profiles in duodenal bile and urine in diabetic subjects , 1988, European journal of clinical investigation.