Bulk mineralogy, water abundance, and hydrogen isotope composition of unequilibrated ordinary chondrites

[1]  T. Rigaudier,et al.  Hydrogen isotopic evidence for nebular pre-hydration and the limited role of parent-body processes in CM chondrites , 2023, Earth and Planetary Science Letters.

[2]  A. Rubin,et al.  Mineralogy, petrology, and oxygen‐isotope compositions of magnetite ± fayalite assemblages in CO3, CV3, and LL3 chondrites , 2021, Meteoritics & Planetary Science.

[3]  A. Brearley,et al.  Plagioclase alteration and equilibration in ordinary chondrites: Metasomatism during thermal metamorphism , 2021, Geochimica et Cosmochimica Acta.

[4]  M. Bizzarro,et al.  Origin of hydrogen isotopic variations in chondritic water and organics , 2021, 2105.10814.

[5]  M. Zolensky,et al.  Thermal metamorphism of CM chondrites: A dehydroxylation‐based peak‐temperature thermometer and implications for sample return from asteroids Ryugu and Bennu , 2021, Meteoritics & planetary science.

[6]  J. Dra̧żkowska,et al.  Bifurcation of planetary building blocks during Solar System formation , 2021, Science.

[7]  B. Marty,et al.  Earth’s water may have been inherited from material similar to enstatite chondrite meteorites , 2020, Science.

[8]  P. Beck,et al.  The Piancaldoli meteorite: A forgotten primitive LL3.10 ordinary chondrite , 2020, Meteoritics & Planetary Science.

[9]  T. Rigaudier,et al.  Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components , 2020, Geochimica et Cosmochimica Acta.

[10]  A. Brearley,et al.  Amorphous silicates in the matrix of Semarkona: The first evidence for the localized preservation of pristine matrix materials in the most unequilibrated ordinary chondrites , 2020, Meteoritics & Planetary Science.

[11]  Y. Marrocchi,et al.  Hydrogen isotopic composition of water in CV-type carbonaceous chondrites , 2018, Earth and Planetary Science Letters.

[12]  R. Jones,et al.  Primary feldspar in the Semarkona LL3.00 chondrite: Constraints on chondrule formation and secondary alteration , 2018, Meteoritics & Planetary Science.

[13]  T. Kleine,et al.  Age of Jupiter inferred from the distinct genetics and formation times of meteorites , 2017, Proceedings of the National Academy of Sciences.

[14]  L. Hallis D/H ratios of the inner Solar System , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  S. Derenne,et al.  Hydrogen isotope fractionation in methane plasma , 2017, Proceedings of the National Academy of Sciences.

[16]  S. Bernard,et al.  Thermal recalcitrance of the organic D-rich component of ordinary chondrites , 2016 .

[17]  M. Mottl,et al.  Evidence for primordial water in Earth’s deep mantle , 2015, Science.

[18]  K. Howard,et al.  Modal mineralogy of CI and CI-like chondrites by X-ray diffraction , 2015 .

[19]  L. Remusat,et al.  Micron-scale D/H heterogeneity in chondrite matrices: A signature of the pristine solar system water? , 2015, 1502.01067.

[20]  A. Brearley,et al.  Widespread hydrothermal alteration minerals in the fine‐grained matrices of the Tieschitz unequilibrated ordinary chondrite , 2014 .

[21]  R. Bowden,et al.  The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions , 2013 .

[22]  F. Ciesla,et al.  The D/H ratio of water in the solar nebula during its formation and evolution , 2013 .

[23]  E. Jacquet,et al.  Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites , 2013, 1301.5665.

[24]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[25]  P. Warren Stable isotopes and the noncarbonaceous derivation of ureilites, in common with nearly all differentiated planetary materials , 2011 .

[26]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[27]  G. Cody,et al.  Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids , 2010 .

[28]  T. Mccoy,et al.  Analysis of ordinary chondrites using powder X‐ray diffraction: 1. Modal mineral abundances , 2010 .

[29]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[30]  K. Emmerich,et al.  Thermal reactions of smectites—Relation of dehydroxylation temperature to octahedral structure , 2007 .

[31]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[32]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[33]  P. Hoppe,et al.  Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites , 2006, Science.

[34]  G. Cressey,et al.  A Mössbauer spectroscopy and X‐ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism , 2005 .

[35]  T. Stephan,et al.  Carbonaceous xenoliths in the Krymka LL3.1 chondrite: Mysteries and established facts , 2005 .

[36]  G. Cressey,et al.  Accurate quantification of the modal mineralogy of rocks when image analysis is difficult , 2002, Mineralogical Magazine.

[37]  B. Dubrulle,et al.  Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation , 1999 .

[38]  J. Wasson,et al.  Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites , 1998, Nature.

[39]  G. Cressey,et al.  Rapid, Accurate Phase Quantification of Clay-Bearing Samples using a Position-Sensitive X-Ray Detector , 1998 .

[40]  C. Pillinger,et al.  Deuterium/hydrogen ratios in unequilibrated ordinary chondrites , 1981, Nature.

[41]  L. Merlivat,et al.  Deuterium concentration in the early Solar System: hydrogen and oxygen isotope study , 1979, Nature.

[42]  A. Brearley,et al.  Aqueous alteration of porous microchondrules in Semarkona: Implications for hydration, oxidation and elemental exchange processes , 2019, Geochimica et Cosmochimica Acta.

[43]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[44]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites. XI - Metamorphism, pairing, and brecciation of ordinary chondrites , 1991 .

[45]  C. Pillinger,et al.  Deuterium Enrichments in Primitive Meteorites , 1982 .