Ice giant system exploration within ESA’s Voyage 2050

[1]  J. Fortney,et al.  Ice Giant Systems: The scientific potential of orbital missions to Uranus and Neptune , 2020, Planetary and Space Science.

[2]  P. Dalba,et al.  The exoplanet perspective on future ice giant exploration , 2020, Philosophical Transactions of the Royal Society A.

[3]  D. Turrini,et al.  A Review of the in Situ Probe Designs from Recent Ice Giant Mission Concept Studies , 2020, Space Science Reviews.

[4]  J. H. In,et al.  Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants , 2020, Space Science Reviews.

[5]  James Merrifield,et al.  European Radioisotope Thermoelectric Generators (RTGs) and Radioisotope Heater Units (RHUs) for Space Science and Exploration , 2019, Space Science Reviews.

[6]  R. Hueso,et al.  Atmospheric Dynamics and Vertical Structure of Uranus and Neptune’s Weather Layers , 2019, Space Science Reviews.

[7]  Nitin Arora,et al.  Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey , 2019, Planetary and Space Science.

[8]  T. Guillot,et al.  Uranus and Neptune: Origin, Evolution and Internal Structure , 2019, Space Science Reviews.

[9]  G. Orton,et al.  Ice Giant Circulation Patterns: Implications for Atmospheric Probes , 2019, Space Science Reviews.

[10]  D. DeBoer,et al.  Neptune's Latitudinal Variations as Viewed with ALMA , 2019, The Astronomical Journal.

[11]  R. Massey,et al.  Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and swift , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  T. Spilker,et al.  A Joint NASA/ESA Mission Concept for In Situ Probe Explorations of the Ice Giants , 2018 .

[13]  D. Trilling,et al.  Red material on the large moons of Uranus: Dust from the irregular satellites? , 2018, Icarus.

[14]  Erik A. Petigura,et al.  The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap , 2018, The Astronomical Journal.

[15]  G. Orton,et al.  Seasonal Stratospheric Photochemistry on Uranus and Neptune. , 2018, Icarus.

[16]  Gilbert W. Collins,et al.  Experimental evidence for superionic water ice using shock compression , 2018 .

[17]  R. Helled,et al.  The Formation of Mini-Neptunes , 2017, 1709.04736.

[18]  T. Encrenaz,et al.  Scientific rationale for Uranus and Neptune in situ explorations , 2017, Planetary and Space Science.

[19]  M. L. Mays,et al.  Interplanetary coronal mass ejection observed at STEREO‐A, Mars, comet 67P/Churyumov‐Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU , 2017 .

[20]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[21]  C. Russell,et al.  The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets , 2014 .

[22]  Javier Ruiz,et al.  Neptune and Triton: Essential pieces of the Solar System puzzle , 2014 .

[23]  P. Gaulme,et al.  The comparative exploration of the ice giant planets with twin spacecraft: Unveiling the history of our Solar System , 2014, 1402.2650.

[24]  William B. Hubbard,et al.  Atmospheric confinement of jet streams on Uranus and Neptune , 2013, Nature.

[25]  Supriya Chakrabarti,et al.  Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets , 2012 .

[26]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[27]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[28]  R. E. Johnson,et al.  Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations , 2006, 0704.1525.

[29]  M. Showalter,et al.  New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring , 2006, Science.

[30]  B. Conrath,et al.  The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data , 1991 .

[31]  R. H. Brown,et al.  Triton's Geyser-Like Plumes: Discovery and Basic Characterization , 1990, Science.

[32]  E. Miner,et al.  The Voyager 2 Encounter with the Neptunian System , 1989, Science.

[33]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[34]  R. H. Brown,et al.  Voyager 2 in the Uranian System: Imaging Science Results , 1986, Science.

[35]  E. Miner,et al.  The Voyager 2 Encounter with the Uranian System , 1986, Science.

[36]  T. Mattsson,et al.  The phase diagram of water and the magnetic fields of Uranus and Neptune , 2011 .