A high-Q tunable grounded negative inductor for small antennas and broadband metamaterials

This paper presents a broadband high-Q tunable negative inductor based on a gyrator topology. In order to reduce the risk of instability and to increase circuit bandwidth, simple inverters are used as transconductance amplifier. A complete stability analysis and careful circuit design details using SOI 180 nm technology are presented. Post-layout simulations results show a negative inductance variation from -24 nH to -13.7 nH. For a bandwidth from 10 MHz to 1 GHz, inductance value error remains under 12.5 %. Circuit power consumption is 16 mW; and area consumption is 120 μm by 84 μm.

[1]  S. Tretyakov,et al.  Veselago Materials: What is Possible and Impossible about the Dispersion of the Constitutive Parameters , 2007, IEEE Antennas and Propagation Magazine.

[2]  Andrea Alù,et al.  Broadening the cloaking bandwidth with non-Foster metasurfaces. , 2013, Physical review letters.

[3]  Joshua W. Shehan,et al.  Measurement of a CMOS negative inductor for wideband non-foster metamaterials , 2014, IEEE SOUTHEASTCON 2014.

[4]  Sanjay Raman,et al.  Large-signal analysis of MOS varactors in CMOS -G/sub m/ LC VCOs , 2003 .

[5]  Ehsan Afshari,et al.  Low-Power Negative Inductance Integrated Circuits for GHz Applications , 2015, IEEE Microwave and Wireless Components Letters.

[6]  J. S. Colburn,et al.  A Variable Negative-Inductance Integrated Circuit at UHF Frequencies , 2012, IEEE Microwave and Wireless Components Letters.

[7]  R. M. Foster,et al.  A reactance theorem , 1924 .

[8]  Fei Yuan CMOS Active Inductors and Transformers: Principle, Implementation, and Applications , 2008 .

[9]  S. Tretyakov,et al.  The influence of complex material coverings on the quality factor of simple radiating systems , 2005, IEEE Transactions on Antennas and Propagation.

[10]  Richard W. Ziolkowski,et al.  Design and measurements of an electrically small, broad bandwidth, non- Foster circuit-augmented protractor antenna , 2012 .

[11]  E. Afshari,et al.  Composite Metamaterial and Metasurface Integrated With Non-Foster Active Circuit Elements: A Bandwidth-Enhancement Investigation , 2013, IEEE Transactions on Antennas and Propagation.

[12]  Igor Krois,et al.  Towards active dispersionless ENZ metamaterial for cloaking applications , 2010 .

[13]  Bram Nauta Analog CMOS Filters for Very High Frequencies , 1992 .

[14]  Igor Krois,et al.  Negative capacitor paves the way to ultra-broadband metamaterials , 2011 .

[15]  Sanjay Raman,et al.  Large-signal analysis of MOS varactors in CMOS -Gm LC VCOs , 2003, IEEE J. Solid State Circuits.

[16]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[17]  Roberto G. Rojas,et al.  Non-Foster impedance matching of electrically small antennas , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[18]  Willie J Padilla,et al.  Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits. , 2012, Optics express.

[19]  F. Yuan CMOS Active Inductors and Transformers , 2008 .

[20]  Albert Kevin. Perry,et al.  Broadband antenna systems realized from active circuit conjugate impedance matching. , 1973 .

[21]  J.G. Linvill,et al.  Transistor Negative-Impedance Converters , 1953, Proceedings of the IRE.