An Efficient and Facile Synthesis of Quinoxaline Derivatives Catalyzed by KHSO4 at Room Temperature

[1]  M. Heravi,et al.  On Water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4 · 5H2O , 2007 .

[2]  M. Heravi,et al.  A Practical Knoevenagel Condensation Catalysed by Imidazole , 2006 .

[3]  王玉炉,et al.  A simple KHSO4 promoted synthesis of 2-arylsubstituted benzimidazoles by oxidative condensation of aldehydes with o-phenylenediamine , 2006 .

[4]  M. Heravi,et al.  One-Pot Synthesis of Some Nitrogen and Sulfur Heterocycles Using Thiosemicarbazide Under Microwave Irradiation in a Solventless System , 2006 .

[5]  M. Heravi,et al.  KHSO4: a catalyst for the chemo-selective preparation of 1,1-diacetates from aldehydes under solvent-free conditions , 2005 .

[6]  R. Bhosale,et al.  An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst , 2005 .

[7]  C. Yao,et al.  Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines , 2005 .

[8]  H. Ila,et al.  Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: a novel highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines. , 2005, Organic letters.

[9]  R. Taylor,et al.  Quinoxaline synthesis from α-hydroxy ketones via a tandem oxidation process using catalysed aerobic oxidation , 2005 .

[10]  Jiann T. Lin,et al.  Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials , 2005 .

[11]  C. Lindsley,et al.  General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines , 2004 .

[12]  C. D. Wilfred,et al.  Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. , 2004, Organic & biomolecular chemistry.

[13]  L. Hegedus,et al.  Synthesis of 5,12-dioxocyclam nickel (II) complexes having quinoxaline substituents at the 6 and 13 positions as potential DNA bis-intercalating and cleaving agents. , 2003, The Journal of organic chemistry.

[14]  B. Borhan,et al.  Facile oxidation of aldehydes to acids and esters with Oxone. , 2003, Organic letters.

[15]  V. Lynch,et al.  Quinoxaline-bridged porphyrinoids. , 2002, Journal of the American Chemical Society.

[16]  S. Antoniotti,et al.  Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines , 2002 .

[17]  N. Ede,et al.  Solid-phase synthesis of quinoxalines on SynPhase™ Lanterns , 2001 .

[18]  I. Sage,et al.  Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications , 2001 .

[19]  N. Xekoukoulotakis,et al.  Synthesis of quinoxalines by cyclization of α-arylimino oximes of α-dicarbonyl compounds , 2000 .

[20]  M. Ismail,et al.  Synthesis and Antimicrobial Activities of Some Novel Quinoxalinone Derivatives , 2000 .

[21]  P. Petukhov,et al.  Synthesis of chiral hexahydrophenazines by treatment of dimeric nitrosochlorides with 1,2-diaminoarenes , 1997 .

[22]  R. G. Browne,et al.  4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. , 1990, Journal of medicinal chemistry.

[23]  K. Makino,et al.  Regent progress in the quinoxaline chemistry. Synthesis and biological activity , 1988 .

[24]  D. Williams,et al.  Structure revision of the antibiotic echinomycin. , 1975, Journal of the American Chemical Society.

[25]  K. Katagiri,et al.  The mode of action of quinoxaline antibiotics. Interaction of quinomycin A with deoxyribonucleic acid. , 1967, The Journal of antibiotics.