Inter-Technology Backscatter: Towards Internet Connectivity for Implanted Devices

We introduce inter-technology backscatter, a novel approach that transforms wireless transmissions from one technology to another, on the air. Specifically, we show for the first time that Bluetooth transmissions can be used to create Wi-Fi and ZigBee-compatible signals using backscatter communication. Since Bluetooth, Wi-Fi and ZigBee radios are widely available, this approach enables a backscatter design that works using only commodity devices. We build prototype backscatter hardware using an FPGA and experiment with various Wi-Fi, Bluetooth and ZigBee devices. Our experiments show we can create 2--11~Mbps Wi-Fi standards-compliant signals by backscattering Bluetooth transmissions. To show the generality of our approach, we also demonstrate generation of standards-complaint ZigBee signals by backscattering Bluetooth transmissions. Finally, we build proof-of-concepts for previously infeasible applications including the first contact lens form-factor antenna prototype and an implantable neural recording interface that communicate directly with commodity devices such as smartphones and watches, thus enabling the vision of Internet connected implanted devices.

[1]  Darlene A Lobel,et al.  Brain machine interface and limb reanimation technologies: restoring function after spinal cord injury through development of a bypass system. , 2014, Mayo Clinic proceedings.

[2]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[3]  Falko Dressler,et al.  An IEEE 802.11a/g/p OFDM receiver for GNU radio , 2013, SRIF '13.

[4]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[5]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.

[6]  Falko Dressler,et al.  The scrambler attack: A robust physical layer attack on location privacy in vehicular networks , 2015, 2015 International Conference on Computing, Networking and Communications (ICNC).

[7]  S. J. Thomas,et al.  A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[8]  Yu-Te Liao,et al.  A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring , 2012 .

[9]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[10]  Simon Haykin,et al.  Communication Systems , 1978 .

[11]  Amay J Bandodkar,et al.  Non-invasive wearable electrochemical sensors: a review. , 2014, Trends in biotechnology.

[12]  Ying Su,et al.  A Digital 1.6 pJ/bit Chip Identification Circuit Using Process Variations , 2008, IEEE Journal of Solid-State Circuits.

[13]  Yu-Te Liao,et al.  A Fully Integrated RF-Powered Contact Lens With a Single Element Display , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[14]  Seungjoon Lee,et al.  Maranello: Practical Partial Packet Recovery for 802.11 , 2010, NSDI.

[15]  Joshua R. Smith,et al.  PASSIVE WI-FI: Bringing Low Power to Wi-Fi Transmissions , 2016, GETMBL.

[16]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[17]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[18]  Ming Yin,et al.  A 100-channel hermetically sealed implantable device for wireless neurosensing applications , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[19]  Mohammad Rostami,et al.  Enabling Practical Backscatter Communication for On-body Sensors , 2016, SIGCOMM.

[20]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[21]  Vincent Liu,et al.  Enabling instantaneous feedback with full-duplex backscatter , 2014, MobiCom.

[22]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[23]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[24]  Matthew S. Reynolds,et al.  Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices , 2015, 2015 IEEE International Conference on RFID (RFID).

[25]  Sachin Katti,et al.  BackFi: High Throughput WiFi Backscatter , 2015, SIGCOMM.

[26]  Ming Yin,et al.  A 100-Channel Hermetically Sealed Implantable Device for Chronic Wireless Neurosensing Applications , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[27]  Gerwin Schalk,et al.  A brain–computer interface using electrocorticographic signals in humans , 2004, Journal of neural engineering.

[28]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[29]  W. Marsden I and J , 2012 .

[30]  Tony Greicius A Wi-Fi Reflector Chip To Speed Up Wearables , 2015 .

[31]  G. Ojemann,et al.  Subdural strip electrodes for localizing epileptogenic foci. , 1984, Journal of neurosurgery.

[32]  Hari Balakrishnan,et al.  Improving loss resilience with multi-radio diversity in wireless networks , 2005, MobiCom '05.

[33]  Dina Katabi,et al.  Secure In-Band Wireless Pairing , 2011, USENIX Security Symposium.

[34]  Stephen Berard,et al.  Implications of Historical Trends in the Electrical Efficiency of Computing , 2011, IEEE Annals of the History of Computing.

[35]  Aggelos Bletsas,et al.  Bistatic backscatter radio for power-limited sensor networks , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[36]  Yu-Te Liao,et al.  A 3-$\mu\hbox{W}$ CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring , 2012, IEEE Journal of Solid-State Circuits.

[37]  Joshua R. Smith,et al.  Dual band wireless power and bi-directional data link for implanted devices in 65 nm CMOS , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[38]  Shyamnath Gollakota,et al.  Bringing Gesture Recognition to All Devices , 2014, NSDI.

[39]  Fan Zhang,et al.  A 9 $\mu$ A, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2010, IEEE Journal of Solid-State Circuits.