Robustness of the BMP morphogen gradient in Drosophila embryonic patterning

[1]  Kavita Shah,et al.  A Chemical-Genetic Strategy Implicates Myosin-1c in Adaptation by Hair Cells , 2002, Cell.

[2]  Peter Dallos,et al.  Prestin, a new type of motor protein , 2002, Nature Reviews Molecular Cell Biology.

[3]  P Dallos,et al.  Intracellular Anions as the Voltage Sensor of Prestin, the Outer Hair Cell Motor Protein , 2001, Science.

[4]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[5]  R. Dorfman,et al.  Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. , 2001, Development.

[6]  R. Fettiplace,et al.  Clues to the cochlear amplifier from the turtle ear , 2001, Trends in Neurosciences.

[7]  G. Frolenkov,et al.  Expression and Localization of Prestin and the Sugar Transporter GLUT-5 during Development of Electromotility in Cochlear Outer Hair Cells , 2000, The Journal of Neuroscience.

[8]  M. Freeman Feedback control of intercellular signalling in development , 2000, Nature.

[9]  G. Manley Cochlear mechanisms from a phylogenetic viewpoint. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Levine,et al.  Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. , 2000, Development.

[11]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[12]  Jing Zheng,et al.  Prestin is the motor protein of cochlear outer hair cells , 2000, Nature.

[13]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[14]  E. L. Ferguson,et al.  Morphogen gradients: new insights from DPP. , 1999, Trends in genetics : TIG.

[15]  L. Raftery,et al.  TGF-beta family signal transduction in Drosophila development: from Mad to Smads. , 1999, Developmental biology.

[16]  Sangbin Park,et al.  Interpretation of a BMP Activity Gradient in Drosophila Embryos Depends on Synergistic Signaling by Two Type I Receptors, SAX and TKV , 1998, Cell.

[17]  E. L. Ferguson,et al.  Spatially Restricted Activation of the SAX Receptor by SCW Modulates DPP/TKV Signaling in Drosophila Dorsal–Ventral Patterning , 1998, Cell.

[18]  C. Heldin,et al.  The L45 loop in type I receptors for TGF‐β family members is a critical determinant in specifying Smad isoform activation , 1998, FEBS letters.

[19]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[20]  A. Hudspeth,et al.  Mechanical amplification of stimuli by hair cells , 1997, Current Opinion in Neurobiology.

[21]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[22]  Gary R. Grotendorst,et al.  Combinatorial signaling by Twisted Gastrulation and Decapentaplegic , 1997, Mechanisms of Development.

[23]  D Kosman,et al.  Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. , 1997, Development.

[24]  A. Verkman,et al.  Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. , 1997, Biophysical journal.

[25]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[26]  M. Levine,et al.  The screw gene encodes a ubiquitously expressed member of the TGF-beta family required for specification of dorsal cell fates in the Drosophila embryo. , 1994, Genes & development.

[27]  P. Dallos,et al.  First appearance and development of electromotility in neonatal gerbil outer hair cells , 1994, Hearing Research.

[28]  W. Gelbart,et al.  An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. , 1993, Development.

[29]  P. Dallos The active cochlea , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  M. Ruggero Responses to sound of the basilar membrane of the mammalian cochlea , 1992, Current Opinion in Neurobiology.

[31]  J. Santos-Sacchi,et al.  Reversible inhibition of voltage-dependent outer hair cell motility and capacitance , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  A. Forge Structural features of the lateral walls in mammalian cochlear outer hair cells , 1991, Cell and Tissue Research.

[33]  S. Roth,et al.  The polarity of the dorsoventral axis in the drosophila embryo is defined by an extracellular signal , 1991, Cell.

[34]  Mario A. Ruggero,et al.  Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration , 1991, Hearing Research.

[35]  J. Ashmore A fast motile response in guinea‐pig outer hair cells: the cellular basis of the cochlear amplifier. , 1987, The Journal of physiology.

[36]  G. K. Yates,et al.  Basilar membrane measurements and the travelling wave , 1986, Hearing Research.

[37]  William E. Brownell,et al.  Electrokinetic shape changes of cochlear outer hair cells , 1986, Nature.

[38]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[39]  A. Nuttall,et al.  Intracellular recordings from cochlear inner hair cells: effects of stimulation of the crossed olivocochlear efferents. , 1983, Science.

[40]  B. Bohne,et al.  Holes in the reticular lamina after noise exposure: Implication for continuing damage in the organ of Corti , 1983, Hearing Research.

[41]  B. M. Johnstone,et al.  Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. , 1982, The Journal of the Acoustical Society of America.

[42]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[43]  P Dallos,et al.  Properties of auditory nerve responses in absence of outer hair cells. , 1978, Journal of neurophysiology.

[44]  N. Kiang,et al.  Tails of tuning curves of auditory-nerve fibers. , 1973, The Journal of the Acoustical Society of America.

[45]  Thomas Gold,et al.  Hearing. II. The Physical Basis of the Action of the Cochlea , 1948, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[46]  E. Bier,et al.  Creation of a Sog morphogen gradient in the Drosophila embryo. , 2002, Developmental cell.

[47]  K. Steel,et al.  Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations , 2002, Nature Neuroscience.

[48]  T. Tabata,et al.  Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. , 2000, Molecular cell.

[49]  J. Willott The Auditory psychobiology of the mouse , 1983 .

[50]  P. Dallos,et al.  Bioelectric correlates of kanamycin intoxication. , 1974, Audiology : official organ of the International Society of Audiology.