Constructions of hamiltonian graphs with bounded degree and diameter O(logn)

Abstract Token ring topology has been frequently used in the design of distributed loop computer networks and one measure of its performance is the diameter. We propose an algorithm for constructing hamiltonian graphs with n vertices, maximum degree Δ and diameter O ( log n ) , where n is an arbitrary number. The number of edges is asymptotically bounded by ( 2 − 1 Δ − 1 − ( Δ − 2 ) 2 ( Δ − 1 ) 3 ) n . In particular, we construct a family of hamiltonian graphs with diameter at most 2 ⌊ log 2 n ⌋ , maximum degree 3 and at most 1 + 11 n / 8 edges.

[1]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[2]  Lih-Hsing Hsu,et al.  Optimal 1-Hamiltonian Graphs , 1998, Inf. Process. Lett..

[3]  John P. Hayes,et al.  Edge fault tolerance in graphs , 1993, Networks.

[4]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[5]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).

[6]  Michael R. Capalbo An Explicit Construction of Lower-Diameter Cubic Graphs , 2003, SIAM J. Discret. Math..

[7]  John P. Hayes,et al.  Node fault tolerance in graphs , 1996, Networks.

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[9]  Noga Alon,et al.  Decreasing the diameter of bounded degree graphs , 2000 .

[10]  Lih-Hsing Hsu,et al.  A New Family of Optimal 1-Hamiltonian Graphs with Small Diameter , 1998, COCOON.

[11]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  D. Frank Hsu,et al.  Distributed Loop Computer Networks: A Survey , 1995, J. Parallel Distributed Comput..

[14]  Lih-Hsing Hsu,et al.  Brother trees: A family of optimal 1p-hamiltonian and 1-edge hamiltonian graphs , 2003, Inf. Process. Lett..

[15]  Lih-Hsing Hsu,et al.  Christmas Tree: A Versatile 1-Fault-Tolerant Design for Token Rings , 1999, Inf. Process. Lett..