Finding shared decisions in stakeholder networks: An agent-based approach

We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations’ results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.

[1]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[2]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[3]  Nina Schwarz,et al.  How agent heterogeneity, model structure and input data determine the performance of an empirical ABM - A real-world case study on residential mobility , 2016, Environ. Model. Softw..

[4]  François Bousquet,et al.  Modelling with stakeholders , 2010, Environ. Model. Softw..

[5]  Fausto Marincioni,et al.  The Lyon-Turin High-Speed Rail: The Public Debate and Perception of Environmental Risk in Susa Valley, Italy , 2009, Environmental management.

[6]  N. Dalkey,et al.  An Experimental Application of the Delphi Method to the Use of Experts , 1963 .

[7]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[8]  Matteo Marsili,et al.  Statistical mechanics model for the emergence of consensus. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Galam Minority opinion spreading in random geometry , 2002, cond-mat/0203553.

[10]  Scott Moss,et al.  Alternative Approaches to the Empirical Validation of Agent-Based Models , 2007, J. Artif. Soc. Soc. Simul..

[11]  Ernesto Estrada,et al.  The Structure of Complex Networks: Theory and Applications , 2011 .

[12]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[13]  Michela Le Pira,et al.  Modelling stakeholder participation in transport planning , 2016 .

[14]  C. Mullon,et al.  An environmental modelling approach : the use of multi-agent simulations , 1988 .

[15]  J. Elster,et al.  Foundations of Social Choice Theory , 1986 .

[16]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[17]  A. Sen,et al.  Social Choice Theory , 1980 .

[18]  A. D. Martino,et al.  Nature and statistics of majority rankings in a dynamical model of preference aggregation , 2007, 0709.3018.

[19]  Michela Le Pira,et al.  Simulating Opinion Dynamics on Stakeholders' Networks through Agent-based Modeling for Collective Transport Decisions , 2015, ANT/SEIT.

[20]  Michela Le Pira,et al.  Modelling consensus building in Delphi practices for participated transport planning , 2015, 1511.06127.

[21]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[22]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[23]  Paul Windrum,et al.  Empirical Validation of Agent-Based Models: Alternatives and Prospects , 2007, J. Artif. Soc. Soc. Simul..

[24]  Michela Le Pira,et al.  Analysis of AHP methods and the Pairwise Majority Rule (PMR) for collective preference rankings of sustainable mobility solutions , 2015 .

[25]  Alessandro Pluchino,et al.  AGENT-BASED MODELLING OF STAKEHOLDER INTERACTION IN TRANSPORT DECISIONS , 2013 .

[26]  Jennifer S. Evans-Cowley,et al.  Microparticipation with Social Media for Community Engagement in Transportation Planning , 2012 .

[27]  A. Pluchino,et al.  CHANGING OPINIONS IN A CHANGING WORLD: A NEW PERSPECTIVE IN SOCIOPHYSICS , 2004 .

[28]  G. Rowe,et al.  Public Participation Methods: A Framework for Evaluation , 2000 .

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.