Optical Interconnection and Clocking Using Planar-Integrated Free-Space Optics

Integration and miniaturization at the systems level are key requirements for photonics applications. Here, we describe the concept of planar integration of free-space optical systems and its use as an optical interconnection technology. Two specific applications will be considered, a parallel chip-to-chip interconnect and an optical clock distribution network.

[1]  M Gruber,et al.  Planar-integrated optical vector-matrix multiplier. , 2000, Applied optics.

[2]  H Ogawa,et al.  Planar-optic-disk pickup with diffractive micro-optics. , 1994, Applied optics.

[3]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[4]  L. M. Schiavone,et al.  InGaAs/GaAs strained quantum wire lasers grown by organometallic chemical vapor deposition on nonplanar substrates , 1993 .

[5]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[6]  Jürgen Jahns,et al.  Optical clock distribution using integrated free-space optics , 1992 .

[7]  L. Coldren,et al.  Investigation of tilted superlattices for quantum-wire laser applications , 1991 .

[8]  Stefan Sinzinger,et al.  Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform. , 2002, Optics letters.

[9]  J Jahns,et al.  Optical interconnects using top-surface-emitting microlasers and planar optics. , 1992, Applied optics.

[10]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[11]  L. C. West,et al.  Design and fabrication of high-efficiency beam splitters and beam deflectors for integrated planar micro-optic systems. , 1993, Applied optics.

[12]  Krishnamurthy,et al.  Serpentine superlattice quantum-wire arrays of (Al,Ga)As grown on vicinal GaAs substrates. , 1992, Physical review letters.

[13]  J. Schulman,et al.  Quantum wires with strain effect: Tight-binding analysis , 1992 .

[14]  Stefan Sinzinger,et al.  Microoptically integrated correlators for security applications , 2002 .

[15]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Jürgen Jahns,et al.  IMAGING PROPERTIES OF PLANAR-INTEGRATED MICRO-OPTICS , 1999 .

[17]  Finite-element analysis of valence band structure and optical properties of quantum-wire arrays on vicinal substrates , 1995 .

[18]  J. Yi,et al.  Band Structure Analysis of Strained Quantum Wire Arrays , 2003 .

[19]  A Huang,et al.  Planar integration of free-space optical components. , 1989, Applied optics.

[20]  H. Bartelt,et al.  Optical interconnects for neural and reconfigurable VLSI architectures , 2000, Proceedings of the IEEE.

[21]  S H Song,et al.  Beam-array combination with planar integrated optics for three-dimensional multistage interconnection networks. , 1997, Applied optics.

[22]  Barbara Lunitz,et al.  Tolerant design of a planar-optical clock distribution system , 1997 .

[23]  D. A. Kleinman,et al.  Energy-gap discontinuities and effective masses for G a A s − Al x Ga 1 − x As quantum wells , 1984 .

[24]  K. Iga,et al.  Stacked planar optics: an application of the planar microlens. , 1982, Applied optics.

[25]  A. Chen,et al.  Strained GaxIn1−xP multiple quantum wire light‐emitting diodes: A luminescence polarization study , 1993 .

[26]  A. Chen,et al.  Fabrication and characterization of AlGaInP multiple-quantum-wire lasers , 1992, 1992 International Technical Digest on Electron Devices Meeting.