Variational ansatz-based quantum simulation of imaginary time evolution

Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.

[1]  Michael Zwolak,et al.  Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. , 2004, Physical review letters.

[2]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[3]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[4]  J. Toivanen,et al.  Solution of time-independent Schrödinger equation by the imaginary time propagation method , 2007, J. Comput. Phys..

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[7]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[8]  R. Feynman Simulating physics with computers , 1999 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  J. Cirac,et al.  Variational principle for quantum impurity systems in and out of equilibrium: Application to Kondo problems , 2018, Physical review B.

[11]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[12]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[13]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[14]  Alán Aspuru-Guzik,et al.  Compact wavefunctions from compressed imaginary time evolution , 2014, 1409.7358.

[15]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[16]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[17]  J. Cirac,et al.  Generalized Hartree–Fock theory for interacting fermions in lattices: numerical methods , 2010, 1005.5284.

[18]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[19]  Ulrich Schollwock,et al.  Imaginary-time matrix product state impurity solver for dynamical mean-field theory , 2015, 1507.08650.

[20]  Henry Krakauer,et al.  Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis. , 2006, The Journal of chemical physics.

[21]  J. Whitfield,et al.  Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register. , 2014, ACS nano.

[22]  Roman Jackiw,et al.  Time-dependent variational principle and the effective action , 1979 .

[23]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[24]  Jonathan Romero,et al.  Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer , 2018, Quantum Science and Technology.

[25]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[26]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[27]  Peter Kramer,et al.  A review of the time-dependent variational principle , 2008 .

[28]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[29]  G. C. Wick Properties of Bethe-Salpeter Wave Functions , 1954 .

[30]  M. Poincaré,et al.  Sur la dynamique de l’électron , 1906 .

[31]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[32]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[33]  J. Broeckhove,et al.  On the equivalence of time-dependent variational-principles , 1988 .

[34]  J. Cirac,et al.  Variational Study of Fermionic and Bosonic Systems with Non-Gaussian States: Theory and Applications , 2017, 1707.05902.

[35]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[36]  Simon Benjamin,et al.  Error-Mitigated Digital Quantum Simulation. , 2018, Physical review letters.

[37]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[38]  J. Eisert,et al.  Thermalization in nature and on a quantum computer. , 2011, Physical review letters.

[39]  Alán Aspuru-Guzik,et al.  Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics , 2013, Proceedings of the National Academy of Sciences.

[40]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[41]  Des Spence,et al.  110% , 2007, BMJ : British Medical Journal.

[42]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[43]  Alán Aspuru-Guzik,et al.  Clock quantum Monte Carlo technique: An imaginary-time method for real-time quantum dynamics , 2014, 1410.1877.

[44]  H. Trotter On the product of semi-groups of operators , 1959 .

[45]  Sulla Derivabilita,et al.  RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO , 2008 .

[46]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[47]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[48]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[49]  Steven R White,et al.  Sliced Basis Density Matrix Renormalization Group for Electronic Structure. , 2017, Physical review letters.

[50]  Mario Motta,et al.  Ab initio computations of molecular systems by the auxiliary‐field quantum Monte Carlo method , 2017, 1711.02242.

[51]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[52]  M. Handzic 5 , 1824, The Banality of Heidegger.

[53]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[54]  W. Marsden I and J , 2012 .