Preservation of bone organic fraction is not predictive of the preservation of bone inorganic fraction when assessing stable isotope analysis sample quality control measures

[1]  P. Roberts,et al.  TOOTHFIR: Presenting a dataset and a preliminary meta-analysis of Fourier Transform Infra-red Spectroscopy indices from archaeological and palaeontological tooth enamel , 2022, Quaternary International.

[2]  A. Ferretti,et al.  Dead, fossil or alive: Bioapatite diagenesis and fossilization , 2021 .

[3]  Gregory E. Berg,et al.  Using bone bioapatite yield for quality control in stable isotope analysis applications , 2021, Journal of Archaeological Science: Reports.

[4]  E. Guiry,et al.  Quality control for modern bone collagen stable carbon and nitrogen isotope measurements , 2020, Methods in Ecology and Evolution.

[5]  J. Eerkens,et al.  Stable isotope evidence of diet breadth expansion and regional dietary variation among Middle-to-Late Holocene Hunter-Gatherers of Central California , 2020, Journal of Archaeological Science: Reports.

[6]  W. Pestle,et al.  Particle size matters: The effect of particle size on carbon and oxygen isotope composition of bone hydroxyapatite. , 2020, American journal of physical anthropology.

[7]  G. Artioli,et al.  Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones. , 2018, Talanta.

[8]  M. Collins,et al.  Diagenesis of archaeological bone and tooth , 2018 .

[9]  K. Britton A stable relationship: isotopes and bioarchaeology are in it for the long haul , 2017, Antiquity.

[10]  G. Kamenov,et al.  Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the Maya Region , 2016, PloS one.

[11]  Sarah W Keenan,et al.  From bone to fossil: A review of the diagenesis of bioapatite , 2016 .

[12]  C. Snoeck,et al.  Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition , 2015 .

[13]  Olaf Nehlich The application of sulphur isotope analyses in archaeological research: A review , 2015 .

[14]  E. Bartelink,et al.  Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis , 2014 .

[15]  E. Bartelink,et al.  Paleodietary analysis of a San Francisco Bay Area shellmound: stable carbon and nitrogen isotope analysis of late Holocene humans from the Ellis Landing site (CA-CCO-295) , 2013 .

[16]  W. Pestle,et al.  Bone collagen preservation in the tropics: A case study from ancient Puerto Rico , 2012 .

[17]  K. Gordon,et al.  Re-examining the chemical evaluation of diagenesis in human bone apatite , 2011 .

[18]  C. Remien,et al.  Woody cover and hominin environments in the past 6 million years , 2011, Nature.

[19]  A. Chamberlain,et al.  Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral , 2010 .

[20]  A. Froehle,et al.  FOCUS: effect of diet and protein source on carbon stable isotope ratios in collagen: follow up to Warinner and Tuross (2009) , 2010 .

[21]  H. Schwarcz,et al.  New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry , 2010 .

[22]  E. Balan,et al.  Preservation assessment of Miocene–Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analyses , 2010 .

[23]  V. Ferguson,et al.  Nanomechanical properties of modern and fossil bone , 2010 .

[24]  E. Bartelink,et al.  EFFECTS OF DIFFERENT SAMPLE PREPARATION METHODS ON STABLE CARBON AND OXYGEN ISOTOPE VALUES OF BONE APATITE: A COMPARISON OF TWO TREATMENT PROTOCOLS* , 2010 .

[25]  E. Zipser,et al.  Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa , 2009 .

[26]  E. Bartelink Late Holocene Dietary Change in the San Francisco Bay Area , 2009 .

[27]  C. Warinner,et al.  Alkaline cooking and stable isotope tissue-diet spacing in swine: archaeological implications , 2009 .

[28]  M. Glimcher,et al.  Bone mineral: update on chemical composition and structure , 2009, Osteoporosis International.

[29]  Meez Islam,et al.  The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone , 2009 .

[30]  Changsui Wang,et al.  Stable isotope analysis of humans from Xiaojingshan site: implications for understanding the origin of millet agriculture in China , 2008 .

[31]  V. Gionis,et al.  Bone diagenesis: New data from infrared spectroscopy and X-ray diffraction , 2008 .

[32]  C. Trueman,et al.  Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral , 2008 .

[33]  J. Sealy,et al.  Beyond documenting diagenesis: The fifth international bone diagenesis workshop , 2008 .

[34]  M. Lazzeri,et al.  Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite , 2008 .

[35]  M. Collins,et al.  Bone diagenesis in the European Holocene I: patterns and mechanisms , 2007 .

[36]  M. Collins,et al.  Bone diagenesis in the European Holocene II: taphonomic and environmental considerations , 2007 .

[37]  C. Kellner,et al.  A simple carbon isotope model for reconstructing prehistoric human diet. , 2007, American journal of physical anthropology.

[38]  R. Hedges,et al.  Nitrogen isotopes and the trophic level of humans in archaeology , 2007 .

[39]  J. Kingston,et al.  Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: Implications for early hominin paleoecology , 2007 .

[40]  J. Lee-Thorp,et al.  Contributions of biogeochemistry to understanding hominin dietary ecology. , 2006, American journal of physical anthropology.

[41]  M. Mazzocchi,et al.  Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods , 2005 .

[42]  J. Pasteris,et al.  A mineralogical perspective on the apatite in bone , 2005 .

[43]  K. Brown,et al.  Assessing the distribution of African Palaeolithic sites: a predictive model of collagen degradation , 2005 .

[44]  R. Aspden,et al.  Effect of the Proportion of Organic Material in Bone on Thermal Decomposition of Bone Mineral: An Investigation of a Variety of Bones from Different Species Using Thermogravimetric Analysis coupled to Mass Spectrometry, High-Temperature X-ray Diffraction, and Fourier Transform Infrared Spectroscopy , 2004, Calcified Tissue International.

[45]  S. Weiner,et al.  Solubilities of bone mineral from archaeological sites: the recrystallization window , 2004 .

[46]  S. Weiner,et al.  Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids , 2004 .

[47]  T. Varney,et al.  Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration , 2004 .

[48]  B. Reynard,et al.  Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites , 2004 .

[49]  J. Lee-Thorp,et al.  Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies , 2003 .

[50]  R. G. Harrison Paleodiet studies using stable carbon isotopes from bone apatite and collagen , 2003 .

[51]  M. Lazzeri,et al.  First-principles calculation of the infrared spectrum of hematite , 2002 .

[52]  T. Price,et al.  The Seasonal Mobility Model for Prehistoric Herders in the South-western Cape of South Africa Assessed by Isotopic Analysis of Sheep Tooth Enamel , 2002 .

[53]  M. Menu,et al.  The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy , 2002 .

[54]  Andrew R. Millard,et al.  The survival of organic matter in bone: a review , 2002 .

[55]  Robert E. M. Hedges,et al.  Bone diagenesis: an overview of processes , 2002 .

[56]  S. Leavitt,et al.  Climate and Diet in Fremont Prehistory: Economic Variability and Abandonment of Maize Agriculture in the Great Salt Lake Basin , 2002, American Antiquity.

[57]  K. Rogers,et al.  An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. , 2002, Biomaterials.

[58]  T. Nakano,et al.  Variation in crystallinity of hydroxyapatite and the related calcium phosphates by mechanical grinding and subsequent heat treatment , 2002 .

[59]  P. Komadel,et al.  Baseline studies of the clay minerals society source clays: Infrared methods , 2001 .

[60]  R. Hedges,et al.  Sulphur isotopic variation in ancient bone collagen from Europe: implications for human palaeodiet, residence mobility, and modern pollutant studies , 2001 .

[61]  Todd A. Surovell,et al.  Standardizing Infra-red Measures of Bone Mineral Crystallinity: an Experimental Approach , 2001 .

[62]  I. Aksay,et al.  Continuous crystalline carbonate apatite thin films. A biomimetic approach. , 2001, Journal of the American Chemical Society.

[63]  H. Bocherens,et al.  A new approach for studying prehistoric herd management in arid areas: intra-tooth isotopic analyses of archaeological caprine from Iran , 2001 .

[64]  R. Hedges,et al.  Patterns of Diagenesis in Bone II: Effects of Acetic Acid Treatment and the Removal of Diagenetic CO32− , 2000 .

[65]  Christina M. Nielsen-Marsh,et al.  Patterns of Diagenesis in Bone I: The Effects of Site Environments , 2000 .

[66]  B. Beard,et al.  Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. , 2000, Journal of forensic sciences.

[67]  Todd A. Surovell Radiocarbon dating of bone apatite by step heating , 2000 .

[68]  M. Morris,et al.  Application of vibrational spectroscopy to the study of mineralized tissues (review). , 2000, Journal of biomedical optics.

[69]  G. J. Klinken,et al.  Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements , 1999 .

[70]  J. Lee-Thorp,et al.  Alteration of Enamel Carbonate Environments during Fossilization , 1999 .

[71]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[72]  W. Clyde,et al.  Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables , 1998 .

[73]  A. Bigi,et al.  Chemical and structural characterization of the mineral phase from cortical and trabecular bone. , 1997, Journal of inorganic biochemistry.

[74]  G. Gleixner,et al.  In vitro decomposition of bone collagen by soil bacteria: The implications for stable isotope analysis in archaeometry , 1997 .

[75]  R. Hedges,et al.  Dissolution experiments on modern and diagenetically altered bone and the effect on the infrared splitting factor , 1997 .

[76]  N. Tuross,et al.  The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite , 1997 .

[77]  J. Bryant,et al.  Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite , 1996 .

[78]  H. Schwarcz,et al.  Infrared and Isotopic Evidence for Diagenesis of Bone Apatite at Dos Pilas, Guatemala: Palaeodietary Implications , 1996 .

[79]  H. Bocherens,et al.  Diagenetic evolution and experimental heating of bone phosphate , 1996 .

[80]  M. Kohn,et al.  Herbivore tooth oxygen isotope compositions: Effects of diet and physiology , 1996 .

[81]  J. Parkington,et al.  Diagenesis of Bones from Eland's Bay Cave , 1996 .

[82]  M. Glimcher,et al.  Hydroxyl groups in bone mineral. , 1995, Bone.

[83]  Steven L. Kuhn,et al.  Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone , 1995 .

[84]  G. Grupe Preservation of Collagen in Bone From Dry, Sandy Soil , 1995 .

[85]  J. Sealy,et al.  Diagenesis of Strontium in Fossil Bone: A Reconsideration of Nelsonet al.(1986) , 1995 .

[86]  H. Bocherens,et al.  Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis , 1995 .

[87]  A. M. Child Towards and Understanding of the Microbial Decomposition of Archaeological Bone in the Burial Environment , 1995 .

[88]  R. Hedges,et al.  Bones and Groundwater: Towards the Modelling of Diagenetic Processes , 1995 .

[89]  H. Krueger Exchange of carbon with biological apatite , 1991 .

[90]  J. Lee-Thorp,et al.  Aspects of the Chemistry of Modern and Fossil Biological Apatites , 1991 .

[91]  A. Shemesh Crystallinity and diagenesis of sedimentary apatites , 1990 .

[92]  Stanley H. Ambrose,et al.  Preparation and characterization of bone and tooth collagen for isotopic analysis , 1990 .

[93]  J. Buikstra,et al.  Comparison of methods for the removal of diagenetic material in buried bone , 1990 .

[94]  S. Weiner,et al.  States of preservation of bones from prehistoric sites in the Near East: A survey , 1990 .

[95]  A. Schimmelmann,et al.  Isotopic fractionation during peptide bond hydrolysis , 1989 .

[96]  J. Sealy,et al.  Chemistry and Paleodietary Research: No More Easy Answers , 1989, American Antiquity.

[97]  C. Rey,et al.  The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study , 1989, Calcified Tissue International.

[98]  F. Pate,et al.  Ionic exchange between soil solution and bone: toward a predictive model , 1989 .

[99]  G. Grupe,et al.  Impact of microbial activity on trace element concentrations in excavated bones , 1989 .

[100]  M. Schoeninger,et al.  Detection of bone preservation in archaeological and fossil samples , 1989 .

[101]  F. Pate,et al.  The use of soil chemistry data to address post-mortem diagenesis in bone mineral , 1988 .

[102]  P. E. Hare,et al.  Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone , 1986 .

[103]  A. Sillen Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation , 1986, Paleobiology.

[104]  M. J. Deniro,et al.  Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction , 1985, Nature.

[105]  C. B. Szpunar,et al.  Bone diagenesis and dietary analysis , 1985 .

[106]  Jonathon E. Ericson,et al.  Strontium isotope characterization in the study of prehistoric human ecology , 1985 .

[107]  M. Schoeninger Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral , 1985 .

[108]  M. Schoeninger,et al.  Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage , 1984 .

[109]  M. J. Deniro,et al.  Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals , 1984 .

[110]  M. Glimcher Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[111]  H. Krueger,et al.  Carbon isotope ratios of bone apatite and animal diet reconstruction , 1983, Nature.

[112]  M. J. Deniro,et al.  Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals , 1982, Nature.

[113]  M. Schoeninger Diet and the evolution of modern human form in the Middle East. , 1982, American journal of physical anthropology.

[114]  H. Krueger,et al.  Carbon isotope analysis of separate chemical phases in modern and fossil bone , 1981, Nature.

[115]  J. Trombe,et al.  New concepts in the composition, crystallization and growth of the mineral component of calcified tissues , 1981 .

[116]  J. Vogel,et al.  13C Content of human collagen as a measure of prehistoric diet in woodland North America , 1978, Nature.

[117]  M. J. Deniro,et al.  Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals , 1978 .

[118]  J. Burnell,et al.  The effects of crystal size distributions on the crystallinity analysis of bone mineral , 1977, Calcified Tissue Research.

[119]  A S Posner,et al.  Crystal chemistry of bone mineral. , 1969, Physiological reviews.

[120]  J. P. LeGeros,et al.  Two types of carbonate substitution in the apatite structure , 1969, Experientia.

[121]  R. Legeros,et al.  Apatite Crystallites: Effects of Carbonate on Morphology , 1967, Science.

[122]  A. S. Posner,et al.  Infrared Analysis of Rat Bone: Age Dependency of Amorphous and Crystalline Mineral Fractions , 1966, Science.

[123]  B. Strates,et al.  The Solubility of Bone Mineral. II. Precipitation of Near-Neutral Solutions of Calcium. and Phosphate , 1957 .

[124]  R. Robinson,et al.  CRYSTAL‐COLLAGEN RELATIONSHIPS IN BONE AS OBSERVED IN THE ELECTRON MICROSCOPE. III. CRYSTAL AND COLLAGEN MORPHOLOGY AS A FUNCTION OF AGE , 1955, Annals of the New York Academy of Sciences.

[125]  A. Engel,et al.  Early diagenesis and recrystallization of bone , 2017 .

[126]  H. Schwarcz,et al.  Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: the stable isotope data. , 2012, Journal of human evolution.

[127]  A. Cherkinsky Can We Get a Good Radiocarbon Age from “Bad Bone”? Determining the Reliability of Radiocarbon Age from Bioapatite , 2009, Radiocarbon.

[128]  T. Price,et al.  Utility of multiple chemical techniques in archaeological residential mobility studies: case studies from Tiwanaku- and Chiribaya-affiliated sites in the Andes. , 2007, American journal of physical anthropology.

[129]  M. Collins,et al.  Diagenesis and survival of osteocalcin in archaeological bone , 2005 .

[130]  A. Mariotti,et al.  Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions , 2004 .

[131]  J. Elliott Calcium Phosphate Biominerals , 2002 .

[132]  R. Hedges,et al.  Is Tooth Enamel Carbonate a Suitable Material for Radiocarbon Dating? , 1995, Radiocarbon.

[133]  S. Ambrose,et al.  Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate , 1993 .

[134]  H. Schwarcz,et al.  Stable isotope analyses in human nutritional ecology , 1991 .

[135]  M. Schoeninger,et al.  Diet, Status, and Complex Social Structure in Iron Age Central Europe: Some Contributions of Bone Chemistry , 1988 .

[136]  N. V. D. Merwe,et al.  Carbon isotope analysis of fossil bone apatite , 1987 .

[137]  M. J. Deniro,et al.  Effect of Heating On the Stable Carbon and Nitrogen Isotope Ratios of Bone Collagen , 1985 .

[138]  Racquel Z. LeGeros,et al.  Phosphate Minerals in Human Tissues , 1984 .

[139]  J. Featherstone,et al.  An infrared method for quantification of carbonate in carbonated apatites. , 1984, Caries research.

[140]  M. J. Deniro,et al.  Carbon isotope ratios of bone apatite and animal diet reconstruction (reply) , 1983, Nature.

[141]  Raquel Zapanta LeGeros,et al.  Apatites in biological systems , 1981 .

[142]  R. B. Parker,et al.  Trace Elements in Bones As Paleobiological Indicators. In: Fossils In the Making , 1980 .

[143]  J. Banewicz,et al.  Radiocarbon Dating of Bone Apatite Using Thermal Release of CO2 , 1980, Radiocarbon.

[144]  J. Termine Bone and tooth mineralization: Matrix effects and crystal development , 1980 .

[145]  C. Haynes,et al.  Mineralogical Studies On Bone Apatite and Their Implications for Radiocarbon Dating , 1977, Radiocarbon.

[146]  D. Carlstrom,et al.  X-ray diffraction studies on the ultrastructure of bone. , 1954, Biochimica et biophysica acta.

[147]  L. Ayliffe,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/oa.654 Sulphur Isotopes in Palaeodietary Studies: a Review and Results from a Controlled Feeding Experiment , 2022 .