Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach

We outline and investigate a set of benchmark simplified models with the aim of providing a minimal simple framework for an interpretation of the existing and forthcoming searches of dark matter particles at the LHC. The simplified models we consider provide microscopic QFT descriptions of interactions between the Standard Model partons and the dark sector particles mediated by the four basic types of messenger fields: scalar, pseudoscalar, vector and axial-vector. Our benchmark models are characterized by four to five parameters, including the mediator mass and width, the dark matter mass and the effective coupling(s). In the gluon fusion production channel we resolve the top quark in the loop and compute full top-mass effects for scalar and pseudoscalar messengers. We show the LHC limits and reach at 8 and 14 TeV for models with all four messenger types. We also outline the complementarity of direct detection, indirect detection and LHC bounds for dark matter searches. Finally, we investigate the effects which arise from extending the simplified model to include potential new physics contributions in production. Using the scalar mediator as an example, we study the impact of heavy new physics loops which interfere with the top-mediated loops. Our computations are performed within the mcfm framework, and we provide fully flexible public Monte Carlo implementation.

[1]  F. Richard,et al.  Searching for dark matter at colliders , 2014, The European Physical Journal C.

[2]  M. Buckley,et al.  Scalar Simplified Models for Dark Matter , 2014, 1410.6497.

[3]  L. Gouskos,et al.  Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments , 2014, 1409.4075.

[4]  A. Boveia,et al.  Simplified Models for Dark Matter and Missing Energy Searches at the LHC , 2014, 1409.2893.

[5]  C. Englert,et al.  Effective theories and measurements at colliders , 2014, 1408.5147.

[6]  J. Lykken,et al.  Light dark matter, naturalness, and the radiative origin of the electroweak scale , 2014, 1408.3429.

[7]  Matthew J. Dolan,et al.  Characterising dark matter searches at colliders and direct detection experiments: vector mediators , 2014, 1407.8257.

[8]  E. Diehl The search for dark matter using monojets and monophotons with the ATLAS detector , 2014 .

[9]  V. Khoze,et al.  Higgs vacuum stability from the dark matter portal , 2014, 1403.4953.

[10]  Alessandro Vichi,et al.  Monojet versus the rest of the world I: t-channel models , 2014, 1402.2285.

[11]  Matthew J. Dolan,et al.  Extended gamma-ray emission from Coy Dark Matter , 2014, 1401.6458.

[12]  M. Tytgat,et al.  Invisible Z′ and dark matter: LHC vs LUX constraints , 2013, 1401.0221.

[13]  K. Dienes,et al.  Overcoming velocity suppression in dark-matter direct-detection experiments , 2013, 1312.7772.

[14]  A. Alves,et al.  The dark Z′ portal: direct, indirect and collider searches , 2013, 1312.5281.

[15]  Ulrich Haisch,et al.  Determining the structure of dark-matter couplings at the LHC , 2013, 1311.7131.

[16]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[17]  F. Kahlhoefer,et al.  QCD effects in mono-jet searches for dark matter , 2013, 1310.4491.

[18]  M. Raidal,et al.  Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter , 2013, 1309.6632.

[19]  Matthew J. Dolan,et al.  Beyond effective field theory for dark matter searches at the LHC , 2013, 1308.6799.

[20]  V. Khoze Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model , 2013, 1308.6338.

[21]  A. Strumia,et al.  Dynamical generation of the weak and Dark Matter scale , 2013, 1306.2329.

[22]  K. Tuominen,et al.  Dark Supersymmetry , 2013, 1305.4182.

[23]  M. Wise,et al.  Gauge theory for baryon and lepton numbers with leptoquarks. , 2013, Physical review letters.

[24]  C. Englert,et al.  Emergence of the electroweak scale through the Higgs portal , 2013, 1301.4224.

[25]  P. Fox,et al.  Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders , 2012, 1211.6390.

[26]  W. Skulski,et al.  The Large Underground Xenon (LUX) experiment , 2012, 1211.3788.

[27]  F. Kahlhoefer,et al.  The impact of heavy-quark loops on LHC dark-matter searches , 2012, 1208.4605.

[28]  Jamie Tattersall,et al.  How low can SUSY go? Matching, monojets and compressed spectra , 2012, 1207.1613.

[29]  M. Szydagis,et al.  First dark matter search results from a 4-kg CF$_3$I bubble chamber operated in a deep underground site , 2012, 1204.3094.

[30]  X. Ji,et al.  Light dark matter and Z′ dark force at colliders , 2012, 1202.2894.

[31]  I. Stekl,et al.  Constraints on low-mass WIMP interactions on 19F from PICASSO , 2012, 1202.1240.

[32]  Hai-Yang Cheng,et al.  Revisiting scalar and pseudoscalar couplings with nucleons , 2012, 1202.1292.

[33]  Dao-Xin Yao,et al.  Constraining the interaction strength between dark matter and visible matter: II. Scalar, vector and spin-3/2 dark matter , 2011, 1112.6052.

[34]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[35]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[36]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[37]  C. Collaboration,et al.  Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS , 2011, 1107.4277.

[38]  C. Sudre,et al.  Final analysis and results of the Phase II SIMPLE dark matter search. , 2011, Physical review letters.

[39]  Tilman Plehn,et al.  Exploring the Higgs portal , 2011, 1106.3097.

[40]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[41]  Jared A. Evans,et al.  Simplified Models for LHC New Physics Searches , 2011, 1105.2838.

[42]  J. Campbell,et al.  Vector boson pair production at the LHC , 2011, 1105.0020.

[43]  P. Fox,et al.  LEP Shines Light on Dark Matter , 2011, 1103.0240.

[44]  Xiao-Jun Bi,et al.  Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter , 2010, 1012.2022.

[45]  N. Kidonakis Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution , 2010, 1009.4935.

[46]  T. Tait,et al.  Constraints on dark matter from colliders , 2010, 1008.1783.

[47]  J. Hisano,et al.  Gluon contribution to dark matter direct detection , 2010, 1007.2601.

[48]  J. Huston,et al.  New parton distributions for collider physics , 2010, 1007.2241.

[49]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[50]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[51]  Chong-Sheng Li,et al.  Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC , 2009, 0912.4511.

[52]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[53]  Jonathan L. Feng,et al.  Lower limit on dark matter production at the CERN Large Hadron Collider. , 2005, Physical review letters.

[54]  George Rajna,et al.  Light Dark Matter , 2004, hep-ph/0408357.

[55]  D0 Collaboration Search for Large Extra Dimensions in the Monojet + Missing ET Channel at D0 , 2003, hep-ex/0302014.

[56]  J. Campbell,et al.  An update on vector boson pair production at hadron colliders , 1999, hep-ph/9905386.

[57]  P. Jetzer,et al.  Baryonic dark matter , 1996, astro-ph/9708222.

[58]  A. Nelson,et al.  Heavy gluons and monojets , 1985 .

[59]  Alan D. Martin,et al.  Collider monojets as a signature of new dynamics , 1985 .

[60]  J. Polchinski,et al.  Implications of supersymmetric origins for monojets , 1985 .

[61]  W. Keung,et al.  Possible supersymmetry scenario for pp-bar collider monojet events and unaccompanied ''photon'' events , 1984 .

[62]  E. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973, hep-th/0507214.

[63]  J. Gramling,et al.  On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel , 2014 .

[64]  W. Marsden I and J , 2012 .

[65]  C. Englert,et al.  Evasive Higgs Maneuvers at the LHC , 2011 .