Normalization of Ca2+ Signals by Small Oblique Dendrites of CA1 Pyramidal Neurons

Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive ∼80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [IK(A)] in the oblique versus the main dendrites. The higher density ofIK(A) may have important implications for our understanding of synaptic integration and plasticity in these structures.

[1]  D. Johnston,et al.  Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. , 1995, Journal of neurophysiology.

[2]  Daniel Johnston,et al.  Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism , 1999, Nature Neuroscience.

[3]  J. Hell,et al.  Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits , 1993, The Journal of cell biology.

[4]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[5]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[6]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[7]  W. N. Ross,et al.  Spatial Segregation and Interaction of Calcium Signalling Mechanisms in Rat Hippocampal CA1 Pyramidal Neurons , 2002, The Journal of physiology.

[8]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[9]  J M Bekkers,et al.  Distribution and activation of voltage‐gated potassium channels in cell‐attached and outside‐out patches from large layer 5 cortical pyramidal neurons of the rat , 2000, The Journal of physiology.

[10]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[11]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[12]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[13]  J. Storm,et al.  A postsynaptic transient K+ current modulated by arachidonic acid regulates synaptic integration and threshold for LTP induction in hippocampal pyramidal cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Johnston,et al.  Multiple Channel Types Contribute to the Low-Voltage-Activated Calcium Current in Hippocampal CA3 Pyramidal Neurons , 1996, The Journal of Neuroscience.

[15]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[16]  W. N. Ross,et al.  Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels , 1992, Neuron.

[17]  Bernardo L. Sabatini,et al.  Analysis of calcium channels in single spines using optical fluctuation analysis , 2000, Nature.

[18]  D. Johnston,et al.  Neuromodulation of dendritic action potentials. , 1999, Journal of neurophysiology.

[19]  William A. Catterall,et al.  Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons , 1990, Nature.

[20]  W. N. Ross,et al.  Synergistic Release of Ca2+ from IP3-Sensitive Stores Evoked by Synaptic Activation of mGluRs Paired with Backpropagating Action Potentials , 1999, Neuron.

[21]  Min Zhuo,et al.  Dendritic Ca2+ Channels Characterized by Recordings from Isolated Hippocampal Dendritic Segments , 1997, Neuron.

[22]  C. Colbert,et al.  Ion channel properties underlying axonal action potential initiation in pyramidal neurons , 2002, Nature Neuroscience.

[23]  D. Johnston,et al.  Downregulation of Transient K+ Channels in Dendrites of Hippocampal CA1 Pyramidal Neurons by Activation of PKA and PKC , 1998, The Journal of Neuroscience.

[24]  G. Buzsáki,et al.  The apical shaft of CA1 pyramidal cells is under GABAergic interneuronal control , 2001, Neuroscience.

[25]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[26]  M. Yeckel,et al.  L-Type calcium channels are required for one form of hippocampal mossy fiber LTP. , 1998, Journal of neurophysiology.

[27]  Shigeo Watanabe,et al.  Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Jeffrey C Magee,et al.  Phosphorylation‐dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons , 2002, The Journal of physiology.

[29]  Nace L. Golding,et al.  Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons , 1999, The Journal of Neuroscience.

[30]  J. Sweatt,et al.  Input-specific immunolocalization of differentially phosphorylated Kv4.2 in the mouse brain. , 2000, Learning & memory.

[31]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[32]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[33]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[34]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions , 1995, The Journal of comparative neurology.

[35]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[36]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[37]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[38]  B. Sakmann,et al.  Voltage‐gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients , 2000, The Journal of physiology.

[39]  W. N. Ross,et al.  High time resolution fluorescence imaging with a CCD camera , 1991, Journal of Neuroscience Methods.

[40]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[41]  D. Johnston,et al.  Protein Kinase Modulation of Dendritic K+ Channels in Hippocampus Involves a Mitogen-Activated Protein Kinase Pathway , 2002, The Journal of Neuroscience.

[42]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[43]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[44]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[45]  K. Swartz,et al.  Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.