The Positive Mass Theorem with Arbitrary Ends

We prove a Riemannian positive mass theorem for manifolds with a single asymptotically flat end, but otherwise arbitrary other ends, which can be incomplete and contain negative scalar curvature. The incompleteness and negativity is compensated for by large positive scalar curvature on an annulus, in a quantitative fashion. In the complete noncompact case with nonnegative scalar curvature, we have no extra assumption and hence prove a long-standing conjecture of Schoen and Yau.

[1]  S. Yau,et al.  Proof of the positive mass theorem. II , 1981 .

[2]  Richard Schoen,et al.  The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature , 1980 .

[3]  E. Witten A new proof of the positive energy theorem , 1981 .

[4]  R. Schoen Variational theory for the total scalar curvature functional for riemannian metrics and related topics , 1989 .

[5]  Jintian Zhu Width estimate and doubly warped product , 2020, 2003.01315.

[6]  K. Steffen,et al.  Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals , 2002 .

[7]  Dan A. Lee,et al.  The spacetime positive mass theorem in dimensions less than eight , 2011, 1110.2087.

[8]  William P. Minicozzi,et al.  A Course in Minimal Surfaces , 2011 .

[9]  Chao Li,et al.  Generalized soap bubbles and the topology of manifolds with positive scalar curvature , 2020, 2008.11888.

[10]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[11]  M. Gromov Four Lectures on Scalar Curvature , 2019, 1908.10612.

[12]  L. Simon Remarks on curvature estimates for minimal hypersurfaces , 1976 .

[13]  M. Gromov,et al.  The Classification of Simply Connected Manifolds of Positive Scalar Curvature Author ( s ) : , 2010 .

[14]  Jeff Cheeger,et al.  Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds , 1982 .

[15]  Jintian Zhu Rigidity results for complete manifolds with nonnegative scalar curvature , 2020, 2008.07028.

[16]  M. Gromov Metric Inequalities with Scalar Curvature , 2017, Geometric and Functional Analysis.

[17]  S. Yau,et al.  The energy and the linear momentum of space-times in general relativity , 1981 .

[18]  Klaus Ecker,et al.  Regularity Theory for Mean Curvature Flow , 2003 .

[19]  S. Yau,et al.  Conformally flat manifolds, Kleinian groups and scalar curvature , 1988 .

[20]  S. Yau Geometry of three manifolds and existence of Black Hole due to boundary effect , 2002 .

[21]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[22]  Dennis DeTurck,et al.  Some regularity theorems in riemannian geometry , 1981 .

[23]  R. Schoen,et al.  Regularity of stable minimal hypersurfaces , 1981 .

[24]  I. Tamanini Boundaries of Caccioppoli sets with Hölder-continuois normal vector. , 1982 .

[25]  B. White,et al.  A local regularity theorem for mean curvature flow , 2005, 1605.06592.

[26]  The Higher Dimensional Positive Mass Theorem I , 2006, math/0608795.

[27]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[28]  J. Lohkamp The Higher Dimensional Positive Mass Theorem II , 2016, 1612.07505.

[29]  William K. Allard,et al.  On the first variation of a varifold , 1972 .

[30]  S. Yau,et al.  Positive scalar curvature and minimal hypersurface singularities , 2017, Surveys in Differential Geometry.

[31]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: Equilibrium shapes of liquids and sessile drops , 2012 .

[32]  S. Yau,et al.  Positive Scalar Curvature on Noncompact Manifolds and the Liouville Theorem. , 2020, 2009.12618.

[33]  J. Lohkamp Scalar curvature and hammocks , 1999 .

[34]  M. Gromov No metrics with Positive Scalar Curvatures on Aspherical 5-Manifolds , 2020, 2009.05332.

[35]  Dan Lee Geometric Relativity , 2019, Graduate Studies in Mathematics.

[36]  I. Holopainen Riemannian Geometry , 1927, Nature.