A Behavioral Characterization of Plausible Priors

Recent theories of choice under uncertainty represent ambiguity via multiple priors, informally interpreted as alternative probabilistic models of the uncertainty that the decision-maker considers equally plausible. This paper provides a robust behavioral foundation for this interpretation. A prior P is deemed “plausible” if (i) preferences over a subset C of acts are consistent with subjective expected utility (SEU), and (ii) jointly with an appropriate utility function, P provides the unique SEU representation of preferences over C. Under appropriate axioms, plausible priors can be elicited from preferences; moreover, if these axioms hold, (i) preferences are probabilistically sophisticated if and only if they are SEU, and (ii) under suitable consequentialism and dynamic consistency axioms, “plausible posteriors” can be derived from plausible priors via Bayes’ rule. Several well-known decision models are consistent with the axioms proposed here.

[1]  Colin F. Camerer,et al.  Recent developments in modelling preferences: Uncertainty and ambiguitiy , 1991 .

[2]  C. Pires A Rule For Updating Ambiguous Beliefs , 2002 .

[3]  Larry G. Epstein,et al.  Intertemporal Asset Pricing Under Knightian Uncertainty , 1994 .

[4]  P. Malliavin Infinite dimensional analysis , 1993 .

[5]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[6]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[7]  Colin Camerer,et al.  Recent developments in modeling preferences: Uncertainty and ambiguity , 1992 .

[8]  T. Bewley Knightian decision theory. Part I , 2002 .

[9]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[10]  Massimo Marinacci,et al.  Expected Utility with Multiple Priors , 2003, ISIPTA.

[11]  Klaus Nehring Ambiguity in the Context of Probabilistic Beliefs , 2001 .

[12]  Larry G. Epstein,et al.  Subjective Probabilities on Subjectively Unambiguous Events , 2001 .

[13]  Massimo Marinacci,et al.  Additivity with multiple priors , 1998 .

[14]  Jean-Yves Jaffray,et al.  Dynamic Decision Making with Belief Functions , 1992 .

[15]  I. Gilboa,et al.  Sharing beliefs: between agreeing and disagreeing , 2000 .

[16]  T. Sargent,et al.  Robust Permanent Income and Pricing , 1999 .

[17]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[18]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[19]  M. Machina Robustifying the Classical Model of Risk Preferences and Beliefs , 2002 .

[20]  Massimo Marinacci,et al.  Probabilistic Sophistication and Multiple Priors , 2002 .

[21]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[22]  Tan Wang A Class of Multi-Prior Preferences , 2003 .

[23]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[24]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[25]  D. Schmeidler,et al.  Bayes without Bernoulli: Simple Conditions for Probabilistically Sophisticated Choice , 1995 .

[26]  Marciano Siniscalchi Bayesian Updating for General Maxmin Expected Utility Preferences , 2001 .

[27]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[28]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[29]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[30]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[31]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[32]  Sujoy Mukerji Ambiguity aversion and incompleteness of contractual form , 1998 .

[33]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[34]  Massimo Marinacci,et al.  A Subjective Spin on Roulette Wheels , 2001 .

[35]  Peter Klibanoff,et al.  Characterizing uncertainty aversion through preference for mixtures , 2001, Soc. Choice Welf..

[36]  Restricting independence to convex cones , 2000 .