Faster integer-feasibility in mixed-integer linear programs by branching to force change

Branching in mixed-integer (or integer) linear programming requires choosing both the branching variable and the branching direction. This paper develops a number of new methods for making those two decisions either independently or together with the goal of reaching the first integer-feasible solution quickly. These new methods are based on estimating the probability of satisfying a constraint at the child node given a variable/direction pair. The surprising result is that the first integer-feasible solution is usually found much more quickly when the variable/direction pair with the smallest probability of satisfying the constraint is chosen. This is because this selection forces change in many candidate variables simultaneously, leading to an integer-feasible solution sooner. Extensive empirical results are given.

[1]  Ted K. Ralphs,et al.  Noncommercial Software for Mixed-Integer Linear Programming , 2005 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  J Fritz,et al.  Efficient Branch and Bound Algorithm for The Dynamic Layout Problem , 1995 .

[4]  Martin W. P. Savelsbergh,et al.  An Updated Mixed Integer Programming Library: MIPLIB 3.0 , 1998 .

[5]  John W. Chinneck,et al.  Active-constraint variable ordering for faster feasibility of mixed integer linear programs , 2007, Math. Program..

[6]  Gilles Pesant,et al.  Counting Solutions of Knapsack Constraints , 2008, CPAIOR.

[7]  Fred W. Glover,et al.  The feasibility pump , 2005, Math. Program..

[8]  Michael R. Bussieck,et al.  Optimal scrap combination for steel production , 1998 .

[9]  Michael C. Ferris,et al.  MIP Models and BB Strategies in Brachytherapy Treatment Optimization , 2003, J. Glob. Optim..

[10]  Thorsten Koch,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Miplib 2003 , 2022 .

[11]  John A. Tomlin,et al.  Technical Note - An Improved Branch-and-Bound Method for Integer Programming , 1971, Oper. Res..

[12]  Egon Balas,et al.  Octane: A New Heuristic for Pure 0-1 Programs , 2001, Oper. Res..

[13]  Jeff Linderoth,et al.  Noncommercial Software for Mixed-Integer Linear Programming , 2005 .

[14]  Alexander Shapiro,et al.  On complexity of multistage stochastic programs , 2006, Oper. Res. Lett..

[15]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[16]  Norman J. Driebeek An Algorithm for the Solution of Mixed Integer Programming Problems , 1966 .

[17]  Anish Jariwala Efficient branch and bound algorithm for the dynamic layout problem , 1995 .

[18]  Martin W. P. Savelsbergh,et al.  Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition , 2000, INFORMS J. Comput..

[19]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..