Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations

Using atomistic simulations of dislocation motion in Ni and $\mathrm{Ni}\text{\ensuremath{-}}\mathrm{Au}$ alloys we report a detailed study of the mobility function as a function of stress, temperature, and alloy composition. We analyze the results in terms of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable agreement between the location of the cusps in the $\ensuremath{\sigma}$-$v$ relation and the velocity of waves propagating in the direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character.

[1]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[2]  N. Glass,et al.  A lattice-dynamics model of the interaction of a dislocation with point defects , 1984 .

[3]  David L. Olmsted,et al.  Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys , 2005 .

[4]  A. Brailsford Anharmonicity Contributions to Dislocation Drag , 1972 .

[5]  C. Schwink,et al.  Quantitative analysis of solution hardening in selected copper alloys , 1987 .

[6]  David D. Meyerhofer,et al.  Shock compression of quartz in the high-pressure fluid regime , 2005 .

[7]  S. C. Hunter,et al.  CXI. Electrical interaction of a dislocation and a solute atom , 1953 .

[8]  Takayoshi Suzuki,et al.  Lattice wave emission from a moving dislocation , 2002 .

[9]  Hussein M. Zbib,et al.  3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals , 2000 .

[10]  Vasily V. Bulatov,et al.  Mobility laws in dislocation dynamics simulations , 2003 .

[11]  J. Hardy,et al.  Lattice statics applied to screw dislocations in cubic metals , 1971 .

[12]  V. Celli,et al.  Motion of a Screw Dislocation in a Crystal , 1970 .

[13]  Vasily V. Bulatov,et al.  Current developments and trends in Dislocation Dynamics , 2002 .

[14]  Justin S. Wark,et al.  Modeling of time resolved x-ray diffraction from laser-shocked crystals , 1997 .

[15]  K. Kaski,et al.  MODIFIED EAM POTENTIALS FOR MODELLING STACKING–FAULT BEHAVIOR IN Cu, Al, Au, AND Ni , 2002 .

[16]  A. Caro,et al.  Phonons radiated by moving dislocations in disordered alloys , 1987 .

[17]  J. D. Eshelby Supersonic Dislocations and Dislocations in Dispersive Media , 1956 .

[18]  C. Woo Dynamics of fast dislocations , 2003 .

[19]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[20]  J. D. Eshelby Uniformly Moving Dislocations , 1949 .

[21]  A. Caro,et al.  Numerical evaluation of the exact phase diagram of an empirical Hamiltonian: Embedded atom model for the Au-Ni system , 2002 .

[22]  Lu,et al.  Unequal wave vectors in short- versus long-range ordering in intermetallic compounds. , 1994, Physical review. B, Condensed matter.

[23]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .

[24]  Hideo Kaburaki,et al.  Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System , 2005, Science.

[25]  E. Kröner Die Clausius-Mosottische Formel in der Theorie der Dielastika , 1964 .

[26]  N. Glass A lattice-dynamics model of an oscillating screw dislocation , 1983 .

[27]  R. Kornberg,et al.  Conserved structures of mediator and RNA polymerase II holoenzyme. , 1999, Science.

[28]  Y. Bréchet,et al.  Dislocation glide in model Ni ( Al ) solid solutions by molecular dynamics , 2004 .

[29]  Rosakis Supersonic Dislocation Kinetics from an Augmented Peierls Model. , 2001, Physical review letters.

[30]  Gao,et al.  Dislocations faster than the speed of sound , 1999, Science.

[31]  V. Bulatov,et al.  Solid-solution hardening by point-like obstacles of different kinds , 2004 .

[32]  Meijie Tang,et al.  Simulations on the growth of dislocation density during Stage 0 deformation in BCC metals , 2003 .

[33]  Ishioka Shunya Steady Motion of a Dislocation in a Lattice , 1973 .

[34]  Jaime Marian,et al.  Dynamic transitions from smooth to rough to twinning in dislocation motion , 2004, Nature materials.

[35]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[36]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[37]  G. Leibfried Über den Einfluß thermisch angeregter Schallwellen auf die plastische Deformation , 1950 .