Multicentury Instability of the Atlantic Meridional Circulation in Rapid Warming Simulations With GISS ModelE2

[1]  S. Björck PALEOCLIMATE RECONSTRUCTION | Younger Dryas Oscillation, Global Evidence , 2007 .

[2]  John Turner,et al.  State of the Antarctic and Southern Ocean climate system , 2009 .

[3]  Stefan Rahmstorf,et al.  On the stability of the Atlantic meridional overturning circulation , 2009, Proceedings of the National Academy of Sciences.

[4]  S. Manabe,et al.  CO2‐induced change in a coupled ocean‐atmosphere model and its paleoclimatic implications , 1985 .

[5]  L. Jackson,et al.  Response of the Atlantic meridional overturning circulation to a reversal of greenhouse gas increases , 2014, Climate Dynamics.

[6]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[7]  M. Lavine,et al.  Meta‐analysis of tropical surface temperatures during the Last Glacial Maximum , 2005 .

[8]  Gary D. Clow,et al.  Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition , 1997 .

[9]  J. Severinghaus,et al.  Magnitude and temporal evolution of Dansgaard–Oeschger event 8 abrupt temperature change inferred from nitrogen and argon isotopes in GISP2 ice using a new least-squares inversion , 2014 .

[10]  M. Heimann,et al.  Borehole versus isotope temperatures on Greenland: Seasonality does matter , 2000 .

[11]  Bo Sun,et al.  An atmospheric origin of the multi-decadal bipolar seesaw , 2015, Scientific Reports.

[12]  Wei Liu,et al.  A Diagnostic Indicator of the Stability of the Atlantic Meridional Overturning Circulation in CCSM3 , 2013 .

[13]  R. Stouffer,et al.  Is there a simple bi-polar ocean seesaw? , 2005 .

[14]  T. Crowley North Atlantic Deep Water cools the southern hemisphere , 1992 .

[15]  S. Häkkinen,et al.  Decline of Subpolar North Atlantic Circulation During the 1990s , 2004, Science.

[16]  Dongxiao Zhang,et al.  Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations , 2013 .

[17]  J. White,et al.  The abrupt termination of the Younger Dryas climate event , 1989, Nature.

[18]  J. Hansen,et al.  CMIP5 historical simulations (1850–2012) with GISS ModelE2 , 2014 .

[19]  Thomas F. Stocker,et al.  Influence of CO2 emission rates on the stability of the thermohaline circulation , 1997, Nature.

[20]  Wallace S. Broecker,et al.  PALEOCEAN CIRCULATION DURING THE LAST DEGLACIATION : A BIPOLAR SEESAW ? , 1998 .

[21]  M. Kelley,et al.  Interactive nature of climate change and aerosol forcing , 2017, Journal of geophysical research. Atmospheres : JGR.

[22]  Peter U. Clark,et al.  The role of the thermohaline circulation in abrupt climate change , 2002, Nature.

[23]  E. Boyle LAST-GLACIAL-MAXIMUM NORTH ATLANTIC DEEP WATER ON, OFF OR SOMEWHERE IN-BETWEEN? , 1995 .

[24]  C. Buizert,et al.  Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint , 2014 .

[25]  C. Kissel,et al.  Rapid Reductions in North Atlantic Deep Water During the Peak of the Last Interglacial Period , 2014, Science.

[26]  M. Caffee,et al.  Opening of glacial Lake Agassiz’s eastern outlets by the start of the Younger Dryas cold period , 2018 .

[27]  J. Banner,et al.  Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics , 2015, Nature Communications.

[28]  W. Broecker,et al.  The magnitude of global fresh-water transports of importance to ocean circulation , 1990 .

[29]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[30]  J. Overpeck,et al.  Rapid climate changes in the tropical Atlantic region during the last deglaciation , 1996, Nature.

[31]  R L Miller,et al.  Consistent simulations of multiple proxy responses to an abrupt climate change event. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Daniel Orlikowski,et al.  Black carbon aerosols and the third polar ice cap , 2009 .

[33]  M. Kashgarian,et al.  Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination , 1997, Nature.

[34]  W. R. Peltier,et al.  Arctic freshwater forcing of the Younger Dryas cold reversal , 2005, Nature.

[35]  H. Fischer,et al.  A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy , 2014 .

[36]  J. Severinghaus,et al.  4±1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice , 2008 .

[37]  P. deMenocal,et al.  Effects of glacial meltwater in the GISS coupled atmosphere-ocean model 2 , 2001 .

[38]  L. Jackson,et al.  Extended warming of the northern high latitudes due to an overshoot of the Atlantic meridional overturning circulation , 2011 .

[39]  S. Xie,et al.  Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate , 2017, Science Advances.

[40]  W. Broecker,et al.  A salt oscillator in the glacial Atlantic? 1. The concept , 1990 .

[41]  J. Severinghaus,et al.  Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice , 1998, Nature.

[42]  A. Parker,et al.  There is no real evidence for a diminishing trend of the Atlantic meridional overturning circulation , 2016 .

[43]  S. Manabe,et al.  Study of abrupt climate change by a coupled ocean–atmosphere model , 2000 .

[44]  A. Biastoch,et al.  Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning , 2006 .

[45]  J. McManus,et al.  Synchronous Deglacial Overturning and Water Mass Source Changes , 2010, Science.

[46]  T. Stocker,et al.  Asynchrony of Antarctic and Greenland climate change during the last glacial period , 1998, Nature.

[47]  Richard B. Alley,et al.  The Younger Dryas cold interval as viewed from central Greenland , 2000 .

[48]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[49]  E. Maier‐Reimer,et al.  Mean Circulation and Internal Variability in an Ocean Primitive Equation Model , 1996 .

[50]  Glenn A. Jones,et al.  The marine record of deglaciation from the continental margin off Nova Scotia , 1995 .

[51]  P. Jones,et al.  Climatic signals in multiple highly resolved stable isotope records from Greenland , 2010 .

[52]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[53]  H. Bryden,et al.  Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises , 2015, Science.

[54]  P. Clark,et al.  Younger Dryas cooling and the Greenland climate response to CO2 , 2012, Proceedings of the National Academy of Sciences.

[55]  M. Dubey,et al.  Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures , 2010 .

[56]  R. Stouffer,et al.  Climate Response to External Sources of Freshwater: North Atlantic versus the Southern Ocean , 2007 .

[57]  J. Marotzke,et al.  Atmospheric Transports, the Thermohaline Circulation, and Flux Adjustments in a Simple Coupled Model , 1995 .

[58]  E. Guilyardi,et al.  Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions , 2014, Nature Communications.

[59]  S. Drijfhout,et al.  Meridional overturning circulation: stability and ocean feedbacks in a box model , 2012, Climate Dynamics.

[60]  A. Carlson What Caused the Younger Dryas Cold Event , 2010 .

[61]  Keith W. Dixon,et al.  Have Aerosols Caused the Observed Atlantic Multidecadal Variability , 2013 .

[62]  EPICA community members,et al.  Eight glacial cycles from an Antarctic ice core , 2004 .

[63]  S. Manabe,et al.  Coupled ocean‐atmosphere model response to freshwater input: Comparison to Younger Dryas Event , 1997 .

[64]  K. Briffa,et al.  Sensitivity of climate response to variations in freshwater hosing location , 2009 .

[65]  J. Jouzel,et al.  Glacial-Interglacial Changes in Moisture Sources for Greenland: Influences on the Ice Core Record of Climate , 1994, Science.

[66]  R. Caballero,et al.  Impacts of high-latitude volcanic eruptions on ENSO and AMOC , 2015, Proceedings of the National Academy of Sciences.

[67]  A. Mcintyre,et al.  The North Atlantic Ocean during the last deglaciation , 1981 .

[68]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[69]  J. Russell,et al.  Global climate evolution during the last deglaciation , 2012, Proceedings of the National Academy of Sciences.

[70]  W. Broecker,et al.  The impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11–10 k) , 1986 .

[71]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[72]  S. Kristiansen,et al.  Ocean lead at the termination of the Younger Dryas cold spell , 2013, Nature Communications.

[73]  D. Swingedouw,et al.  Abrupt cooling over the North Atlantic in modern climate models , 2017, Nature Communications.

[74]  A. Sima,et al.  The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales , 2004 .

[75]  Mike Bauer,et al.  Future climate change under RCP emission scenarios with GISS ModelE2 , 2015 .

[76]  M. Stuiver,et al.  North American Glacial History Extended to 75,000 Years Ago , 1978, Science.

[77]  G. Haug,et al.  Rapid oceanic and atmospheric changes during the Younger Dryas cold period , 2009 .

[78]  J. Gregory,et al.  A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic , 2009 .

[79]  J. L. Cullen,et al.  Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation , 2010 .

[80]  Syukuro Manabe,et al.  Century-scale effects of increased atmospheric C02 on the ocean–atmosphere system , 1993, Nature.

[81]  P. deMenocal,et al.  Effects of glacial meltwater in the GISS coupled atmosphereocean model: 1. North Atlantic Deep Water response , 2001 .

[82]  J. Wright,et al.  North Atlantic Deep Water and climate variability during the Younger Dryas cold period , 2011 .

[83]  W. Broecker,et al.  Putting the Younger Dryas Cold Event into Context (Invited) , 2009 .

[84]  E. Brook,et al.  Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. , 2001, Science.

[85]  L. Talley,et al.  The North Atlantic Oscillation, Surface Current Velocities, and SST Changes in the Subpolar North Atlantic , 2003 .

[86]  J. Kutzbach,et al.  Material for Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming , 2009 .

[87]  J. McManus,et al.  Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes , 2004, Nature.

[88]  W. Peltier,et al.  The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations , 2006 .

[89]  R. Wood,et al.  Global warming and thermohaline circulation stability , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[90]  Syukuro Manabe,et al.  Two Stable Equilibria of a Coupled Ocean-Atmosphere Model , 1988 .

[91]  J. Grimalt,et al.  Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes , 2001 .

[92]  Susanne L. Weber,et al.  The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates , 2011 .

[93]  C. Buizert,et al.  Greenland temperature response to climate forcing during the last deglaciation , 2013, Science.

[94]  D. Rind,et al.  Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea-Surface Temperature Estimates: Are They Consistent? , 1985, Quaternary Research.

[95]  Nicolas Bellouin,et al.  Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. , 2012, Nature.

[96]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[97]  D. Stammer,et al.  Large-scale impact of Saharan dust on the North Atlantic Ocean circulation , 2014 .

[98]  R. Wood,et al.  Impacts of thermohaline circulation shutdown in the twenty-first century , 2008 .

[99]  Syukuro Manabe,et al.  Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide , 1994 .

[100]  Mojib Latif,et al.  Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations , 2005 .

[101]  P. Gent A commentary on the Atlantic meridional overturning circulation stability in climate models , 2018 .

[102]  The response of the large-scale ocean circulation to 20th century Asian and non-Asian aerosols , 2013 .

[103]  P. Clark,et al.  Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation , 2012 .

[104]  J. Iversen The late-glacial flora of Denmark and its relation to climate and soil , 1954 .

[105]  Patrick F. Cummins,et al.  Stability and Variability of the Thermohaline Circulation , 1993 .

[106]  P. Clark,et al.  Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation , 2012, Nature.

[107]  A. Kirkland,et al.  Hydrological impact of heinrich events in the subtropical northeast atlantic , 2000, Science.

[108]  S. Rahmstorf,et al.  Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation , 2015 .

[109]  S. Manabe,et al.  The rôle of thermohaline circulation in climate , 1999 .

[110]  Kaoru Tachiiri,et al.  Stability of the Atlantic meridional overturning circulation: A model intercomparison , 2012 .

[111]  K. Hughen,et al.  Synchroneity of Tropical and High-Latitude Atlantic Temperatures over the Last Glacial Termination , 2003, Science.