Wideband 28-nm CMOS Variable-Gain Amplifier

This paper discusses a wideband variable-gain amplifier (VGA) implemented in a 28-nm FDSOI CMOS technology. This VGA employs optimal-biasing and differential large-signal pre-distortion linearizations that operate over all gain settings and over its frequency range. The 0.4-to-4-GHz VGA, which consists of its core circuit and an output buffer, exhibits a wideband gain ranging from 4.6 to 12 dB in 1-dB steps and an input return loss higher than 10 dB while demonstrating a worst-case IM3 of −54 dBm across the gain range at ~0-dBm output power and noise figures from 3 to 5.9 dB at 12 dB gain. The VGA and buffer consume 15 mA and 60 mA from a 1.5 V supply, respectively. The total chip area, including the bond pads, is ${1\times 1\,\text {mm}^{2}}$ .

[1]  Vladimir Aparin,et al.  Analysis of IM Asymmetry in MOSFET Small-Signal Amplifiers , 2011 .

[2]  Joanne DeGroat,et al.  A 1-V 5 GHz Variable Gain Low Noise Amplifier in 0.18-μm CMOS , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[3]  I. Sarkas,et al.  Large and Small Signal Distortion Analysis Using Modified Volterra Series , 2006, 2006 NORCHIP.

[4]  B. Kim,et al.  Highly linear CMOS RF MMIC amplifier using multiple gated transistors and its Volterra series analysis , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[5]  T.W. Kim,et al.  A Common-Gate Amplifier With Transconductance Nonlinearity Cancellation and Its High-Frequency Analysis Using the Volterra Series , 2009, IEEE Transactions on Microwave Theory and Techniques.

[6]  Edgar Sánchez-Sinencio,et al.  A linearization technique for RF low noise amplifier , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[7]  Guido Torelli,et al.  VERDI: an acoustically programmable and adjustable CMOS mixed-mode signal processor for hearing aid applications , 1996 .

[8]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[9]  Calvin Plett,et al.  RF circuit implications of moderate inversion enhanced linear region in MOSFETs , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Chua-Chin Wang,et al.  Wideband 70dB CMOS digital variable gain amplifier design for DVB-T receiver's AGC , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[11]  Hyunchol Shin,et al.  Source Degenerated Derivative Superposition Method for Linearizing RF FET Differential Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.

[12]  Joung Won Park,et al.  Robust derivative superposition method for linearising broadband LNAs , 2009 .

[13]  P.B. Khannur,et al.  Integrated Variable Gain Amplifier and Active RC Ladder Filters , 2007, 2007 International Symposium on Integrated Circuits.

[14]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[15]  Christian Fager,et al.  Prediction of IMD in LDMOS transistor amplifiers using a new large-signal model , 2002 .

[16]  V. Aparin,et al.  A cellular-band CDMA 0.25/spl mu/m CMOS LNA linearized using active post-distortion , 2005 .

[17]  A. Mujeeb,et al.  Highly linear CMOS low noise amplifier with IIP3 boosting technique , 2008, 2008 International SoC Design Conference.

[18]  Carlos E. Saavedra,et al.  Wideband variable gain amplifier with noise cancellation , 2011 .

[19]  Michael M. Green,et al.  A 1.5 V CMOS VGA based on pseudo-differential structures , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[20]  Bumman Kim,et al.  Linearity analysis of CMOS for RF application , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[21]  Gary Brown,et al.  Linearization of CMOS LNA's via optimum gate biasing , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[22]  Yanjie Wang,et al.  A 2.5mW inductorless wideband VGA with dual feedback DC-offset correction in 90nm CMOS technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[23]  H. Zirath,et al.  A comprehensive analysis of IMD behavior in RF CMOS power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[24]  Ilku Nam,et al.  A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner , 2009, IEEE J. Solid State Circuits.

[25]  Songcheol Hong,et al.  A WLAN RF CMOS PA With Large-Signal MGTR Method , 2013, IEEE Transactions on Microwave Theory and Techniques.

[26]  C. E. Saavedra,et al.  Design of a Low-Voltage and Low-Distortion Mixer Through Volterra-Series Analysis , 2013, IEEE Transactions on Microwave Theory and Techniques.

[27]  Abumoslem Jannesari,et al.  Pre-distortion technique to improve linearity of low noise amplifier , 2017, Microelectron. J..

[28]  Leonid Belostotski,et al.  A highly linear wideband 0.3-to-2.7 GHz variable-gain amplifier , 2017 .

[29]  P. Sivonen,et al.  A 1.2-V Highly Linear Balanced Noise-Cancelling LNA in 0.13-$\mu{\hbox{m}}$ CMOS , 2008, IEEE Journal of Solid-State Circuits.

[30]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[31]  H.C. Luong,et al.  A Linearization Technique for RF Receiver Front-End Using Second-Order-Intermodulation Injection , 2008, IEEE Journal of Solid-State Circuits.

[32]  Sergio Bampi,et al.  A Wideband Low-Noise Variable-Gain Amplifier With a 3.4 dB NF and up to 45 dB Gain Tuning Range in 130-nm CMOS , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[33]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[34]  Hyun-Kyu Yu,et al.  A 2GHz 16dBm IIP3 low noise amplifier in 0.25/spl mu/m CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[35]  Jose C. Pedro,et al.  Accurate simulation of GaAs MESFET's intermodulation distortion using a new drain-source current model , 1994 .

[36]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Shahriar Mirabbasi,et al.  On the use of body biasing to control gain, linearity, and noise figure of a mm-wave CMOS LNA , 2010, Proceedings of the 8th IEEE International NEWCAS Conference 2010.

[38]  Leonid Belostotski,et al.  No Noise Is Good Noise: Noise Matching, Noise Canceling, and Maybe a Bit of Both for Wide-Band LNAs , 2016, IEEE Microwave Magazine.

[39]  Ramesh Harjani,et al.  A low-power CMOS VGA for 50 Mb/s disk drive read channels , 1995 .

[40]  Carlos E. Saavedra,et al.  Voltage-variable attenuator MMIC using phase cancellation , 2006 .

[41]  Frank Ellinger,et al.  Broadband variable gain amplifier with very low phase variation in 28nm CMOS , 2015, 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[42]  Sorin P. Voinigescu,et al.  Characterization of the High Frequency Performance of 28-nm UTBB FDSOI MOSFETs as a Function of Backgate Bias , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[43]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[44]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[45]  Byung-Sung Kim,et al.  Linearization of differential CMOS low noise amplifier using cross-coupled post distortion canceller , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[46]  Qiuting Huang,et al.  A low power 200 MHz receiver for wireless hearing aid devices , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[47]  Kwyro Lee,et al.  Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors , 2004, IEEE Journal of Solid-State Circuits.

[48]  Chien-Ping Lee,et al.  Averaging and Cancellation Effect of High-Order Nonlinearity of a Power Amplifier , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  Byung-Sung Kim,et al.  Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker , 2006 .

[50]  P. Kinget,et al.  Low power programmable-gain CMOS distributed LNA for ultra-wideband applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Circuits, 2005..

[51]  Jose Silva-Martinez,et al.  Wide-Band Inductorless Low-Noise Transconductance Amplifiers With High Large-Signal Linearity , 2014, IEEE Transactions on Microwave Theory and Techniques.

[52]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[53]  Shahriar Mirabbasi,et al.  Applications of Body Biasing in Multistage CMOS Low-Noise Amplifiers , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.