Quasi-Monte Carlo methods for lattice systems: A first look
暂无分享,去创建一个
Andreas Griewank | Hernan Leövey | Karl Jansen | Andreas Ammon | M. Müller-Preussker | A. Griewank | K. Jansen | H. Leövey | A. Ammon | M. Müller-Preussker
[1] I. Montvay,et al. Quantum Fields on a Lattice: Introduction , 1994 .
[2] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[3] Kenneth G. Wilson,et al. Quantum Chromodynamics on a Lattice , 1977 .
[4] Sergei S. Kucherenko,et al. Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..
[5] Thomas A. DeGrand,et al. Moment Method for Eigenvalues and Expectation Values , 1980 .
[6] M. Creutz,et al. A Statistical Approach to Quantum Mechanics , 1981 .
[7] Eric Fournié,et al. Monte Carlo Methods in Finance , 2002 .
[8] K. Jansen,et al. A first look at quasi-Monte Carlo for lattice field theory problems , 2012, 1211.4388.
[9] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[10] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[11] H SloanIan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005 .
[12] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[13] Xiaoqun Wang,et al. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..
[14] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[15] Andreas Griewank,et al. Automatic evaluations of cross-derivatives , 2014, Math. Comput..
[16] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] I. Sloan,et al. QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND , 2011, The ANZIAM Journal.
[19] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .
[20] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[21] Paul Bratley,et al. Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.
[22] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[23] A. Owen. Local antithetic sampling with scrambled nets , 2008, 0811.0528.
[24] Henryk Wozniakowski,et al. On decompositions of multivariate functions , 2009, Math. Comput..
[25] M. J. D. Powell,et al. Weighted Uniform Sampling — a Monte Carlo Technique for Reducing Variance , 1966 .
[26] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[27] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[28] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[29] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[30] Shu Tezuka,et al. I-binomial scrambling of digital nets and sequences , 2003, J. Complex..
[31] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[32] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[33] R. Caflisch,et al. Modified Monte Carlo Methods Using Quasi-Random Sequences , 1995 .
[34] Jerome Spanier,et al. Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..
[35] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[36] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[37] Christian B. Lang,et al. The path integral on the lattice , 2010 .
[38] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[39] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[40] M. Pepe,et al. Topological lattice actions , 2010, 1009.2146.
[41] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[42] Z. Fodor,et al. Light Hadron Masses from Lattice QCD , 2012, 1203.4789.
[43] Karl Jansen,et al. Higgs-Yukawa Model in Chirally Invariant Lattice Field Theory , 2012, 1210.1798.
[44] I. Sobol,et al. Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .
[45] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[46] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[47] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[48] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[49] C. Gattringer,et al. Quantum Chromodynamics on the Lattice: An Introductory Presentation , 2009 .