Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring

Simple Summary We evaluated the red net-winged beetle populations’ morphological and genetic divergence within the Holarctic region. In contrast with relatives, D. aurora occurs in an exceptionally large range and very different ecosystems. In Northern America, we found an earlier undetected cryptic species isolated by the Bering Strait since the mid-Miocene. D. aurora colonized Fennoscandia from at least two refugia after the last glacial maximum. The absence of morphological differentiation is supposedly affected by the selection for similarity in the Müllerian mimicry ring. The results exemplify the phylogeographic history in the Holarctic region and contribute to understanding the morphological stasis in an extensive circumpolar range. Abstract The elateroid family Lycidae is known for limited dispersal propensity and high species-level endemism. The red net-winged beetle, Dictyoptera aurora (Herbst, 1874), differs from all relatives by the range comprising almost the entire Holarctic region. Based on a five-marker phylogeny and 67 barcode entries (cox1-5′ mtDNA) from the whole range, we recovered two genetically distinct species within traditionally defined D. aurora and resurrected the name D. coccinata (Say, 1835) as the oldest available synonym for Nearctic populations. Yet, no reliable morphological trait distinguishes these species except for minute differences in the male genitalia. D. coccinata is a monophylum resulting from a single Miocene dispersal event, ~15.8 million years ago, and genetic divergence implies long-term isolation by the Bering Strait. Far East Asian and west European populations are also genetically distinct, although to a lower extent. Two independent colonization events established the Fennoscandian populations after the last glacial maximum. Besides intrinsic factors, the high morphological similarity might result from stabilizing selection for shared aposematic signals. The rapidly accumulating barcode data provide valuable information on the evolutionary history and the origins of regional faunas.

[1]  Shûhei Yamamoto,et al.  Revisiting the Raractocetus Fossils from Mesozoic and Cenozoic Amber Deposits (Coleoptera: Lymexylidae) , 2022, Insects.

[2]  A. Polaszek,et al.  Revision of the World Species of Megaphragma Timberlake (Hymenoptera: Trichogrammatidae) , 2022, Insects.

[3]  E. Perkovsky,et al.  Imprint of a Helcophorus Fairmaire, 1881: the first net-winged beetle (Coleoptera: Lycidae) from Rovno amber. , 2022, Zootaxa.

[4]  M. Ivie,et al.  Dominican amber net-winged beetles suggest stable paleoenvironment as a driver for conserved morphology in a paedomorphic lineage , 2022, Scientific Reports.

[5]  D. Craw,et al.  Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect , 2022, Insect Systematics and Diversity.

[6]  L. Bocak,et al.  Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis , 2021, bioRxiv.

[7]  Erik Tihelka,et al.  Murcybolus gen. nov., a new net-winged beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Lycidae: Burmolycini). , 2021, Zootaxa.

[8]  S. Kazantsev New and little known taxa of neotenic lyropaeine net-winged beetles (Coleoptera: Lycidae). , 2021, Zootaxa.

[9]  L. Bocak,et al.  Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions , 2021, Scientific Reports.

[10]  P. Somervuo,et al.  High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity , 2021, Communications biology.

[11]  D. Ren,et al.  The Clicking Elateroidea from Chinese Mesozoic Deposits (Insecta, Coleoptera) , 2020, Insects.

[12]  L. Bocak,et al.  Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae) , 2020 .

[13]  L. Bocak,et al.  Interactions in multi-pattern Müllerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism , 2020, Scientific Reports.

[14]  M. Ivie,et al.  The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae) , 2020 .

[15]  H. Henttonen,et al.  High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end‐glacial refugia , 2020, Molecular ecology.

[16]  J. Landry,et al.  DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. , 2020, ZooKeys.

[17]  D. Maddison,et al.  The evolution and genomic basis of beetle diversity , 2019, Proceedings of the National Academy of Sciences.

[18]  L. Bocak,et al.  Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles , 2019, Frontiers in Zoology.

[19]  L. Bocak,et al.  Phylogenomic analysis resolves the relationships among net‐winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits , 2019, Systematic Entomology.

[20]  R. DeSalle,et al.  Review and Interpretation of Trends in DNA Barcoding , 2019, Front. Ecol. Evol..

[21]  Sergey V. Kazantsev,et al.  Protolycus gedaniensis gen. et sp. nov., the first Baltic amber representative of Lycini (Coleoptera: Lycidae: Lycinae) , 2019, Palaeoentomology.

[22]  L. Bocak,et al.  The discovery of Burmolycus compactus gen. et sp. nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae) , 2019, Cretaceous Research.

[23]  S. Zaragoza-Caballero,et al.  Checklist of net-winged beetles (Coleoptera: Lycidae) from Mexico. , 2019, Zootaxa.

[24]  Erik Tihelka,et al.  A new genus and tribe of Cretaceous net-winged beetles from Burmese amber (Coleoptera: Elateroidea: Lycidae) , 2019, Palaeoentomology.

[25]  L. Bocak,et al.  The origins and dispersal history of the trichaline net-winged beetles in Southeast Asia, Wallacea, New Guinea and Australia , 2019, Zoological Journal of the Linnean Society.

[26]  Shûhei Yamamoto Fossil evidence of elytra reduction in ship-timber beetles , 2019, Scientific Reports.

[27]  L. Bocak,et al.  The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles , 2019, PeerJ.

[28]  A. Ross Burmese (Myanmar) amber checklist and bibliography 2018 , 2019, Palaeoentomology.

[29]  L. Bocak,et al.  Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae) , 2018, Insects.

[30]  R. Meier,et al.  Towards holomorphology in entomology: rapid and cost‐effective adult–larva matching using NGS barcodes , 2018 .

[31]  Rudolf Meier,et al.  Sorting specimen‐rich invertebrate samples with cost‐effective NGS barcodes: Validating a reverse workflow for specimen processing , 2018, Molecular ecology resources.

[32]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[33]  L. Bocak,et al.  Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism , 2018, Scientific Reports.

[34]  L. Bocak,et al.  The effectiveness of DNA‐based delimitation in Synchonnus net‐winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species , 2018 .

[35]  Peng Zhang,et al.  Evolutionary history of Coleoptera revealed by extensive sampling of genes and species , 2018, Nature Communications.

[36]  N. Grishin,et al.  Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology , 2017, Proceedings of the National Academy of Sciences.

[37]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[38]  L. Bocak,et al.  Congruence between morphology and molecular phylogeny: the reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history , 2017 .

[39]  Shûhei Yamamoto,et al.  Evolutionary stasis in enigmatic jacobsoniid beetles , 2017 .

[40]  P. Reich,et al.  Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia , 2017 .

[41]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[42]  L. Bocak,et al.  Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains , 2016, Scientific Reports.

[43]  Michael S. Y. Lee,et al.  Life on Earth: Count cryptic species in biodiversity tally , 2016, Nature.

[44]  L. Bocak,et al.  Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae) , 2016, ZooKeys.

[45]  Jonas Eberle,et al.  Rarity and Incomplete Sampling in DNA-Based Species Delimitation. , 2016, Systematic biology.

[46]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[47]  Douglas W. Yu,et al.  Mitochondrial metagenomics: letting the genes out of the bottle , 2016, GigaScience.

[48]  L. Hedenäs Rhytidium rugosum (Bryophyta) colonized Scandinavia from at least two glacial refugial source populations , 2015 .

[49]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[50]  L. Bocak,et al.  DNA‐based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles , 2015 .

[51]  A. Hausmann,et al.  A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD , 2015, Molecular ecology resources.

[52]  A. Vogler,et al.  Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics , 2015, Molecular ecology.

[53]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[54]  L. Bocak,et al.  Molecular Phylogeny Reveals High Diversity, Geographic Structure and Limited Ranges in Neotenic Net-Winged Beetles Platerodrilus (Coleoptera: Lycidae) , 2015, PloS one.

[55]  M. Donoghue,et al.  Long-term morphological stasis maintained by a plant–pollinator mutualism , 2014, Proceedings of the National Academy of Sciences.

[56]  S. Kazantsev A new fossil genus of net-winged beetles, with a brief review of amber Lycidae (Insecta: Coleoptera). , 2013, Zootaxa.

[57]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[58]  Michael Balke,et al.  The Effect of Geographical Scale of Sampling on DNA Barcoding , 2012, Systematic biology.

[59]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[60]  H. Ikeda,et al.  Loss of flight promotes beetle diversification , 2012, Nature Communications.

[61]  S. Kazantsev An annotated checklist of Cantharoidea (Coleoptera) of Russia and adjacent territories , 2012 .

[62]  Benjamin Smith,et al.  High-resolution regional simulation of last glacial maximum climate in Europe , 2011 .

[63]  N. Nikitsky,et al.  Larvae of net-winged beetles (Lycidae: Coleoptera) of the European part of Russia and the Caucasus , 2011 .

[64]  D. Ren,et al.  New Fossil Elaterids (Coleoptera: Polyphaga: Elateridae) from the Jehol Biota in China , 2010 .

[65]  L. Bocak,et al.  Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net‐winged beetles , 2010, Molecular ecology.

[66]  G. Poinar,et al.  How long can insect species exist? Evidence from extant and fossil Micromalthus beetles (Insecta: Coleoptera) , 2010 .

[67]  L. Bocak,et al.  EVOLUTION OF MIMICRY PATTERNS IN METRIORRHYNCHUS (COLEOPTERA: LYCIDAE): THE HISTORY OF DISPERSAL AND SPECIATION IN SOUTHEAST ASIA , 2010, Evolution; international journal of organic evolution.

[68]  Dietrich Stauffer,et al.  Simulation of Rapoport's rule for latitudinal species spread , 2005, Theory in Biosciences.

[69]  J. Plotkin,et al.  Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies , 2005, Nature.

[70]  Olaf R. P. Bininda-Emonds,et al.  transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences , 2005, BMC Bioinformatics.

[71]  M. McPeek,et al.  The dynamics of evolutionary stasis , 2005, Paleobiology.

[72]  S. Kazantsev Phylogeny of the tribe Erotini (Coleoptera, Lycidae), with descriptions of new taxa , 2004 .

[73]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  S. Kazantsev MORPHOLOGY OF LYCIDAE WITH SOME CONSIDERATIONS ON EVOLUTION OF THE COLEOPTERA , 2003 .

[75]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[76]  G. Hewitt The genetic legacy of the Quaternary ice ages , 2000, Nature.

[77]  G. Hewitt Post-glacial re-colonization of European biota , 1999 .

[78]  G. Poinar,et al.  The Amber Forest: A Reconstruction of a Vanished World. , 1999 .

[79]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[80]  J. Winkler Three new genera of fossil Lycidae from Baltic amber , 1987 .

[81]  D. Raup,et al.  Periodicity of extinctions in the geologic past. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[82]  W. Barker Ontogeny and phylogeny. , 1980, Archives of surgery.

[83]  日本生物地理学会,et al.  Lycidae (Insecta: Coleoptera) , 1969 .

[84]  C. Schaeffer New Coleoptera and miscellaneous notes , 1911 .

[85]  J. Leconte,et al.  The Complete Writings of Thomas Say on the Entomology of North America... , 2016 .