RHEOLOGY OF PARTIALLY MOLTEN MANTLE ROCKS

▪ Abstract Over the past decade, significant progress has been made in understanding the rheological properties of partially molten mantle rocks. Laboratory experiments demonstrate that a few percent of melt can have an unexpectedly large effect on viscosity both in the diffusional creep regime and in the dislocation creep regime. In both cases, the enhancement in creep rate is much larger than anticipated based on deformation models because melt wets at least a fraction of the grain boundaries. For diffusion creep, the wetted interfaces provide a rapid diffusion path that is not included in analyses based on melt distribution in isotropic melt-crystal systems. For dislocation creep, two points require consideration. First, even without a melt phase present, fine-grained samples deformed in the dislocation creep field flow a factor of ∼10 faster than coarse-grained rocks due to contributions from grain boundary mechanisms to the deformation process. Second, melt has only a small effect on creep rate for c...

[1]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[2]  Rishi Raj,et al.  Creep in polycrystalline aggregates by matter transport through a liquid phase , 1982 .

[3]  H. Waff,et al.  Experimental Determination of Near-Equilibrium Textures in Partially Molten Silicates at High Pressures , 1982 .

[4]  U. Faul,et al.  Effects of Crystalline Anisotropy on Fluid Distribution in Ultramafic Partial Melts , 1992 .

[5]  A. Evans Microfracture from thermal expansion anisotropy—I. Single phase systems , 1978 .

[6]  A. Argon,et al.  Grain boundary and interphase boundary sliding in power law creep , 1979 .

[7]  I. Lambert,et al.  Melting in the deep crust and upper mantle and the nature of the low velocity layer , 1970 .

[8]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures , 1977 .

[9]  J. Tullis,et al.  Experimental deformation of partially melted granitic aggregates , 1988 .

[10]  J. Delaney,et al.  Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses , 1988 .

[11]  N. Carter,et al.  High Temperature Flow of Dunite and Peridotite , 1970 .

[12]  M. Paterson,et al.  The role of water in the deformation of dunite , 1984 .

[13]  M. Paterson,et al.  Rheology of synthetic olivine aggregates: Influence of grain size and water , 1986 .

[14]  D. Kohlstedt,et al.  Substantial hydrogen solubility in olivine and implications for water storage in the mantle , 1992, Nature.

[15]  Nikolaus von Bargen,et al.  Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures , 1986 .

[16]  D. L. Anderson,et al.  Partial melting in the upper mantle , 1970 .

[17]  H. Green,et al.  Melt topology in partially molten mantle peridotite during ductile deformation , 1994, Nature.

[18]  K. Chyung,et al.  Solution-precipitation enhanced creep in solid-liquid aggregates which display a non-zero dihedral angle , 1989 .

[19]  S. Gary What is a plasma instability , 1992 .

[20]  A. Argon,et al.  Steady state power-law creep in heterogeneous alloys with coarse microstructures , 1979 .

[21]  R. Cooper Differential stress‐induced melt migration: An experimental approach , 1990 .

[22]  A. Arzi Critical phenomena in the rheology of partially melted rocks , 1978 .

[23]  D. Kohlstedt,et al.  Chapter 3 Influence of Basaltic Melt on the Creep of Polycrystalline Olivine under Hydrous Conditions , 1994 .

[24]  S. Hart,et al.  The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts , 1989, Nature.

[25]  A. Nakamura,et al.  On the Fe2+ –Mg2+-Interdiffusion in Olivine (II) , 1984 .

[26]  D. Kohlstedt,et al.  Interfacial energies in the olivine basalt system. , 1982 .

[27]  C. J. Hwang,et al.  Effect of a liquid Phase on Superplasticity of 2‐moI%‐Y203‐StabiIlzed Tetragonal Zirconla Polycrystals , 1990 .

[28]  D. Kohlstedt,et al.  Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing , 1984 .

[29]  M. Paterson,et al.  Experimental deformation of partially-melted granite , 1979 .

[30]  T. Shankland,et al.  Geophysical Constraints on Partial Melt in the Upper Mantle (Paper 1R0664) , 1981 .

[31]  F. Horowitz,et al.  Flow laws of polyphase aggregates from end-member flow laws , 1991 .

[32]  J. Wolfenstine,et al.  Influence of Amorphous Grain Boundary Phases on the Superplastic Behavior of 3‐mol%‐Yttria‐Stabilized Tetragonal Zirconia Polycrystals (3Y‐TZP) , 1993 .

[33]  M. Paterson,et al.  The role of water in the deformation of olivine single crystals , 1985 .

[34]  D. Stevenson Weakening under stress , 1994, Nature.

[35]  D. Shimozuru The Low Velocity Zone and Temperature Distribution in the Upper Mantle of the Earth , 1963 .

[36]  J. Wolfenstine,et al.  High-temperature creep and kinetic decomposition of Ni2SiO4 , 1994 .

[37]  R. Gordon,et al.  Compressive creep rates of partially melted Al-Ga alloys , 1975 .

[38]  M. Drury,et al.  Fluid Assisted Recrystallization in Upper Mantle Peridotite Xenoliths from Kimberlites , 1989 .

[39]  D. Toomey,et al.  Intergranular basaltic melt is distributed in thin, elogated inclusions , 1994 .

[40]  S. Karato Does partial melting reduce the creep strength of the upper mantle? , 1986, Nature.

[41]  R. Raj,et al.  Solution-precipitation creep in glass ceramics , 1981 .

[42]  T. Sisson,et al.  Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism , 1993 .

[43]  W. Durham,et al.  Plastic flow of oriented single crystals of olivine: 1. Mechanical data , 1977 .

[44]  M. Ashby,et al.  On creep enhanced by a liquid phase , 1983 .

[45]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[46]  D. Rubie,et al.  Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa , 1994 .

[47]  D. Kohlstedt,et al.  High‐temperature creep of olivine single crystals 1. Mechanical results for buffered samples , 1991 .

[48]  Frank Press,et al.  Some implications on mantle and crustal structure from G waves and love waves , 1959 .

[49]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[50]  C. Spiers,et al.  Weakening of rock salt by water during long-term creep , 1986, Nature.

[51]  D. Kohlstedt,et al.  Rheology and structure of olivine‐basalt partial melts , 1986 .

[52]  P. Buseck,et al.  Fe‐Mg lattice diffusion in olivine , 1973 .

[53]  N. Carter,et al.  Syntectonic Recrystallization of Olivine and Modes of Flow in the Upper Mantle , 1970 .

[54]  P. Michael The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism , 1988 .

[55]  D. Kohlstedt,et al.  Deformation of fine-grained aggregates of olivine plus melt at high temperatures and pressures , 1993 .

[56]  P. Vaughan,et al.  Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: An electron microscopy study , 1982 .

[57]  Greg Hirth,et al.  Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime , 1995 .

[58]  G. Bussod,et al.  Textural Development and Melt Topology in Spinel Lherzolite Experimentally Deformed at Hypersolidus Conditions , 1991 .

[59]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[60]  S. Solomon Seismic-wave attenuation and partial melting in the upper mantle of North America , 1972 .

[61]  C. Goetze A BRIEF SUMMARY OF OUR PRESENT DAY UNDERSTANDING OF THE EFFECT OF VOLATILES AND PARTIAL MELT ON THE MECHANICAL PROPERTIES OF THE UPPER MANTLE , 1977 .