ACCURACY COMPARISON OF THE SRTM, ASTER, NED, NEXTMAP® USA DIGITAL TERRAIN MODEL OVER SEVERAL USA STUDY SITES

Accurate digital terrain models (DTMs) are necessary for a wide variety applications. National-scale mediumresolution elevation data have been acquired for the conterminous United States under the USGS National Elevation Data (NED; 10 m and 30 m), the Shuttle Radar Topographic Mapping (SRTM; 30 m), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER; 30 m) programs. Intermap’s STAR technology offers an improvement over the NED and SRTM datasets with its high-resolution (5 m) bare-ground and firstsurface elevation data and coincident orthorectified radar imagery over the conterminous United States and 17 Western European countries. SRTM, ASTER, NED and NEXTMap® elevation data over several study sites across the United States were compared to in-situ barren land elevation measurements and National Geodetic Survey (NGS) verification check points. The range of study sites represent various terrain types (slope range 0 o - 30 o

[1]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[2]  D. A. Smith,et al.  GEOID99 and G99SSS: 1-arc-minute geoid models for the United States , 2001 .

[3]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[4]  Robert J. McGaughey,et al.  Assessing the influence of flight parameters, interferometric processing, slope and canopy density on the accuracy of X‐band IFSAR‐derived forest canopy height models , 2008 .

[5]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[6]  Akira Hirano,et al.  Mapping from ASTER stereo image data: DEM validation and accuracy assessment , 2003 .

[7]  G. Miliaresis,et al.  An upland object based modelling of the vertical accuracy of the SRTM‐1 elevation dataset , 2007 .

[8]  K. Tennant,et al.  THREE-DIMENSIONAL MAPPING WITH AIRBORNE IFSAR BASED STAR TECHNOLOGY INTERMAP ' S EXPERIENCES , 2004 .

[9]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[10]  Alexander Braun,et al.  Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Aster Gdem Srtm Dted,et al.  ASTER Global DEM Validation Summary Report , 2009 .

[12]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[13]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[14]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[15]  Georgia Fotopoulos,et al.  Assessment of SRTM, ICESat, and Survey Control Monument Elevations in Canada , 2007 .

[16]  DEMs Created from Airborne IFSAR – An Update , 2004 .

[17]  AUTOMATIC GENERATION OF BALD EARTH DIGITAL ELEVATION MODELS FROM DIGITAL SURFACE MODELS CREATED USING AIRBORNE IFSAR , 2001 .

[18]  Guoqing Sun,et al.  Validation of surface height from shuttle radar topography mission using shuttle laser altimeter , 2003 .

[19]  Søren Nørvang Madsen,et al.  Topographic mapping using radar interferometry: processing techniques , 1993, IEEE Trans. Geosci. Remote. Sens..

[20]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[21]  Iain H. Woodhouse,et al.  Forest height retrieval from commercial X-band SAR products , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[23]  Josef Kellndorfer,et al.  Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height , 2007 .

[24]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[25]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[26]  Elise Colin Koeniguer,et al.  Capabilities of a forest coherent scattering model applied to radiometry, interferometry, and polarimetry at P- and L-band , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[27]  BRYAN MERCER Combining LIDAR and IfSAR: What can you expect? , 2001 .

[28]  Tomaz Podobnikar Methods for visual quality assessment of a digital terrain model , 2009 .

[29]  S. Reutebuch,et al.  Accuracy of an IFSAR-derived digital terrain model under a conifer forest canopy , 2005 .

[30]  Chapter 4 The National Elevation Dataset , 2006 .

[31]  H. Balzter,et al.  Observations of forest stand top height and mean height from interferometric SAR and LiDAR over a conifer plantation at Thetford Forest, UK , 2007 .

[32]  S. Hensley,et al.  SRTM C-band topographic data: quality assessments and calibration activities , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[33]  D. Harding,et al.  ICESat validation of SRTM C‐band digital elevation models , 2004 .

[34]  A. Roth,et al.  The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar , 2003 .

[35]  Kamal Sarabandi,et al.  Validation of the Shuttle Radar Topography Mission height data , 2005, IEEE Transactions on Geoscience and Remote Sensing.