On a filter for exponentially localized kernels based on Jacobi polynomials

Let @a,@b>=-12, and for k=0,1,..., p"k^(^@a^,^@b^) denote the orthonormalized Jacobi polynomial of degree k. We discuss the construction of a matrix H so that there exist positive constants c, c"1, depending only on H, @a, and @b such that @?k=0~H"k","np"k^(^@a^,^@b^)(cos@q)p"k^(^@a^,^@b^)(cos@f)@?c"1n^2^m^a^x^(^@a^,^@b^)^+^2exp(-cn(@q-@f)^2),@q,@f@?[0,@p],n=1,2,....Specializing to the case of Chebyshev polynomials, @a=@b=-12, we apply this theory to obtain a construction of an exponentially localized polynomial basis for the corresponding L^2 space.

[1]  Rick Archibald,et al.  A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity , 2002, IEEE Transactions on Medical Imaging.

[2]  Hrushikesh Narhar Mhaskar,et al.  Fundamentals of Approximation Theory , 2000 .

[3]  Jared Tanner,et al.  Optimal filter and mollifier for piecewise smooth spectral data , 2006, Math. Comput..

[4]  Tom H. Koornwinder,et al.  Jacobi Polynomials, II. An Analytic Proof of the Product Formula , 1974 .

[5]  Hrushikesh Narhar Mhaskar,et al.  Polynomial operators and local smoothness classes on the unit interval , 2004, J. Approx. Theory.

[6]  Yuan Xu,et al.  Sub-exponentially localized kernels and frames induced by orthogonal expansions , 2008, 0809.3421.

[7]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[9]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[10]  Woula Themistoclakis,et al.  Polynomial approximation on the sphere using scattered data , 2008 .

[11]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[12]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[13]  Hrushikesh Narhar Mhaskar,et al.  Polynomial Frames: A Fast Tour , 2004 .

[14]  Hrushikesh Narhar Mhaskar,et al.  On Local Smoothness Classes of Periodic Functions , 2005 .

[15]  Eitan Tadmor,et al.  Adaptive filters for piecewise smooth spectral data , 2005 .

[16]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[17]  Mourad E. H. Ismail,et al.  Classical and Quantum Orthogonal Polynomials in One Variable , 2005 .

[18]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[19]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[20]  C. Tompkins,et al.  Elementary numerical analysis , 1971 .

[21]  Vilmos Totik,et al.  Polynomial Approximation of Piecewise Analytic Functions , 1989 .

[22]  Knut S. Eckhoff Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions , 1995 .

[23]  H. Heyer,et al.  Harmonic Analysis of Probability Measures on Hypergroups , 1994 .

[24]  Hrushikesh Narhar Mhaskar,et al.  Polynomial operators for spectral approximation of piecewise analytic functions , 2009 .

[25]  E. Saff,et al.  Approximation by polynomials with locally geometric rates , 1989 .

[26]  Alvaro R. De Pierro,et al.  Detection of edges from spectral data: New results , 2007 .

[27]  Bertil Gustafsson,et al.  On the direct Fourier method for computer tomography , 2000, IEEE Transactions on Medical Imaging.

[28]  TOM KOORNWINDER Gasper AN ANALYTIC PROOF OF THE PRODUCT FORMULA , .

[29]  Hrushikesh Narhar Mhaskar,et al.  On the detection of singularities of a periodic function , 2000, Adv. Comput. Math..

[30]  Jürgen Prestin,et al.  Orthogonal Algebraic Polynomial Schauder Bases of Optimal Degree , 1995 .

[31]  Roland Girgensohn,et al.  Lebesgue Constraints for an Orthogonal Polynomial Schauder Basis , 2000 .

[32]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[33]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[34]  Hrushikesh Narhar Mhaskar,et al.  Diffusion polynomial frames on metric measure spaces , 2008 .

[35]  Leonard Carlitz,et al.  On Jacobi polynomials. , 1956 .