Minimal time for the bilinear control of Schrödinger equations

[1]  Mario Sigalotti,et al.  On some open questions in bilinear quantum control , 2013, 2013 European Control Conference (ECC).

[2]  U. Boscain,et al.  Multi-input Schrödinger equation: Controllability, tracking, and application to the quantum angular momentum , 2013, 1302.4173.

[3]  Karine Beauchard,et al.  Local controllability of 1D Schrödinger equations with bilinear control and minimal time , 2012, 1208.5393.

[4]  Nabile Boussaid,et al.  Small time reachable set of bilinear quantum systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[5]  Mario Sigalotti,et al.  A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule , 2011, ArXiv.

[6]  R'emi Carles,et al.  Nonlinear Schrodinger equation with time dependent potential , 2009, 0910.4893.

[7]  Mario Sigalotti,et al.  Generic controllability properties for the bilinear Schrödinger equation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[8]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[9]  Andrei A. Agrachev,et al.  An estimation of the controllability time for single-input systems on compact Lie Groups , 2006 .

[10]  H. Teismann,et al.  Generalized coherent states and the control of quantum systems , 2005 .

[11]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[12]  T. Tarn,et al.  Quantum Systems , 2010 .

[13]  D. D’Alessandro,et al.  Small time controllability of systems on compact Lie groups and spin angular momentum , 2001 .

[14]  A. Trifonov,et al.  Semiclassical Trajectory-Coherent Approximation in Quantum Mechanics I. High-Order Corrections to Multidimensional Time-Dependent Equations of Schrödinger Type , 1996 .

[15]  V. Belov,et al.  Quasiclassical trajectory-coherent states of an anharmonic oscillator , 1993 .

[16]  V. Belov,et al.  The Aharonov-Bohm effect for nonstationary quasiclassical trajectory-coherent states in a uniform magnetic field , 1992 .

[17]  V. Bagrov,et al.  Quasiclassical trajectory‐coherent states of a particle in an arbitrary electromagnetic field , 1983 .

[18]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[19]  D. Fujiwara A construction of the fundamental solution for the Schrödinger equation , 1979 .

[20]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[21]  Stephen P. Boyd,et al.  Antagonistic control , 2016, Syst. Control. Lett..

[22]  D. Robert PROPAGATION OF COHERENT STATES IN QUANTUM MECHANICS AND APPLICATIONS , 2006 .

[23]  Jean-Michel Coron,et al.  Partial Differential Equations / Optimal Control On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well , 2005 .