A 0.5-V power-efficient low-noise CMOS instrumentation amplifier for wireless biosensor

Abstract This paper presents a low-power, low-noise CMOS instrumentation amplifier intended for use in wireless bio-potential monitoring system. It employs a capacitively-coupled topology to achieve high power efficiency. In order to depress the noise, chopper-stabilized technique is used and a transconductance-boost technique is introduced in low-noise amplifier (LNA). All MOS transistors implemented in LNA are biased in subthreshold region with a supply voltage of 0.5 V to reduce the power consumption. Moreover, a DC-servo loop (DSL) is implemented to realize a high-pass corner for electrode offset cancellation. Implemented in a 0.18 μm CMOS process, the front-end circuit occupies 0.48 mm 2 and draws 1.5 μA. The capacitively-coupled chopper-stabilized instrumentation amplifier (CCIA) draws 800 nA and its input-referred noise is 3.5 μV rms integrated from 0.5 to 1 kHz, which results in a NEF of 3.8 and a PEF of 7.2 respectively. The whole circuit achieves 98 dB CMRR and 73 dB PSRR . The total input-referred noise of the front-end instrumentation amplifier including the DSL is 4.3 μV rms integrated from 0.5 to 1 kHz.

[1]  Wilko J. Kindt,et al.  A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping , 2010, IEEE Journal of Solid-State Circuits.

[2]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[3]  Yingchieh Ho,et al.  A 0.09 $\mu$ W Low Power Front-End Biopotential Amplifier for Biosignal Recording , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[4]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[5]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[6]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[7]  Ramon Pallàs-Areny,et al.  AC-coupled front-end for biopotential measurements , 2003, IEEE Transactions on Biomedical Engineering.

[8]  Refet Firat Yazicioglu,et al.  Ultra-low power biopotential interfaces and their application in wearable and implantable systems , 2007, 2007 2nd International Workshop on Advances in Sensors and Interface.

[9]  Jack Ou,et al.  A $g_{m}/I_{D}$-Based Noise Optimization for CMOS Folded-Cascode Operational Amplifier , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Jordi Parramon,et al.  A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection , 2011, IEEE Journal of Solid-State Circuits.

[11]  Giuseppe Iannaccone,et al.  Design of a 75‐nW, 0.5‐V subthreshold complementary metal–oxide–semiconductor operational amplifier , 2014, Int. J. Circuit Theory Appl..

[12]  Refet Firat Yazicioglu,et al.  A 60 $\mu$W 60 nV/$\surd$Hz Readout Front-End for Portable Biopotential Acquisition Systems , 2007, IEEE Journal of Solid-State Circuits.

[13]  R. R. Harrison,et al.  A low-power low-noise CMOS amplifier for neural recording applications , 2003, IEEE J. Solid State Circuits.

[14]  Wouter A. Serdijn,et al.  An ECG Recording Front-End With Continuous-Time Level-Crossing Sampling , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[15]  Luca Benini,et al.  Wireless sensor networks: Enabling technology for ambient intelligence , 2006, Microelectron. J..

[16]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[17]  Tapani Nevalainen,et al.  Subthreshold nano-watt front-end amplifier for wireless ECG applications , 2014, 2014 NORCHIP.

[18]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[19]  Tsung-Hsien Lin,et al.  Analog front-end amplifier for ECG applications with feed-forward EOS cancellation , 2014, Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test.

[20]  Maryam Shojaei Baghini,et al.  Low-power low-noise analog signal conditioning chip with on-chip drivers for healthcare applications , 2012, Microelectron. J..

[21]  Shuang Song,et al.  A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[22]  Shafqat Ali A power efficient gain enhancing technique for current mirror operational transconductance amplifiers , 2015, Microelectron. J..

[23]  Kai-Wen Yao,et al.  A bandwidth-tunable bioamplifier with voltage-controlled symmetric pseudo-resistors , 2015, Microelectron. J..