Effets des radiations sur des fibres optiques dopées erbium : influence de la composition

Nous avons etudie la sensibilite des fibres dopees erbium (EDF) sous irradiation et les defauts induits par celle-ci. Le premier chapitre presente l'etat de l'art sur les EDF sous irradiations ainsi que les defauts generes dans la silice par les radiations. Le deuxieme chapitre precise les types de radiations utilises et les moyens experimentaux mis en oeuvre pour caracteriser les reponses des fibres sous irradiation ainsi que les defauts a l'origine des pertes. Dans le troisieme chapitre, nous presentons la reponse de plusieurs fibres dopees erbium irradiees aux rayons gamma, protons et rayons X pulses. Les fibres dopees erbium et aluminium presentent des pertes induites par radiation plus elevees que les fibres classiques de transmission des telecommunications (SMF28) ou celles dopees erbium avec peu d'aluminium. Le presence de l'aluminium dans la composition du coeur des fibres dopees erbium est en grande partie responsable des pertes induites. Quelque soit le type d'irradiation, les defauts crees par l'irradiation sont lies a la matrice hote. Nos etudes montrent aussi que l'erbium n'est affecte qu'a travers son interaction avec les defauts crees. Le quatrieme chapitre traite des EDF sous insolation UV et montre que les UV conduisent aux memes effets que les rayons gamma. Le dernier chapitre presente, quant a lui, l'etude des amplificateurs optiques sous irradiation gamma

[1]  V. B. Neustruev Point defects in pure and germanium-doped silica glass and radiation resistance of optical fibres , 1991 .

[2]  E. J. Friebele,et al.  Color Centers in Glass Optical Fiber Waveguides , 1985 .

[3]  A. Naber,et al.  Site-selective luminescence study of defects. in gamma-irradiated glassy germanium dioxide , 1996 .

[4]  S. Berneschi,et al.  Aluminum co-doping of soda-lime silicate glasses: Effect on optical and spectroscopic properties , 2005 .

[5]  E. J. Friebele,et al.  Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers , 1983 .

[6]  Federica Poli,et al.  Photonic crystal fibers : properties and applications , 2007 .

[7]  M. Davis,et al.  Characterization of clusters in rare earth-doped fibers by transmission measurements , 1995 .

[8]  Gingerich,et al.  Radiation-induced defects in glasses: Origin of power-law dependence of concentration on dose. , 1993, Physical review letters.

[9]  Hideo Hosono,et al.  Correlation between Ge E′ Centers and Optical Absorption Bands in SiO2:GeO2 Glasses , 1996 .

[10]  H. Thienpont,et al.  Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber , 2009 .

[11]  N. Olsson,et al.  Erbium-Doped Fiber Amplifiers: Fundamentals and Technology , 1999 .

[12]  H. Thienpont,et al.  Gamma radiation induced loss in erbium doped optical fibers , 2007 .

[13]  Ohki,et al.  Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy. , 1989, Physical review. B, Condensed matter.

[14]  Kaya Nagasawa,et al.  Gamma-Ray-Induced Absorption Bands in Pure-Silica-Core Fibers , 1984 .

[15]  Edward W. Taylor,et al.  Gamma-ray-induced effects in erbium-doped fiber optic amplifiers , 1998, Optics & Photonics.

[16]  Ronald H. West,et al.  Investigation of effects of gamma radiation on erbium doped fibre amplifiers , 1992 .

[17]  S. Girard,et al.  Luminescence spectroscopy of point defects in silica-based optical fibers , 2005 .

[18]  David L. Griscom,et al.  γ-Ray-induced visible/infrared optical absorption bands in pure and F-doped silica-core fibers: are they due to self-trapped holes? , 2004 .

[19]  David L. Griscom,et al.  Determination of the Visible-Range Optical Absorption Spectrum of Peroxy Radicals in Gamma-Irradiated Fused Silica , 1998, Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals.

[20]  Marco Van Uffelen Modelisation de systemes d'acquisition et de transmission a fibres optiques destines a fonctionner en environnement nuclaire , 2001 .

[21]  H. Henschel,et al.  Regeneration of irradiated optical fibres by photobleaching? , 1999, 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471).

[22]  R. Laming,et al.  Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm , 1990, IEEE Photonics Technology Letters.

[23]  Dominique Pagnoux,et al.  Microstructured air-silica fibres: Recent developments in modelling, manufacturing and experiment , 2003, Ann. des Télécommunications.

[24]  F. Berghmans,et al.  Gamma radiation effects in er-doped silica fibres , 2004, Proceedings of the 7th European Conference on Radiation and Its Effects on Components and Systems, 2003. RADECS 2003..

[25]  D. Mckenzie,et al.  Control of defects in optical fibers-a study using cathodoluminescence spectroscopy , 1993 .

[26]  Martin A. Putnam,et al.  Radiation-induced coloring of erbium-doped optical fibers , 1993, Other Conferences.

[27]  G. C. Valley,et al.  Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements , 2001 .

[28]  Y. Hama,et al.  Si-O-Si strained bond and paramagnetic defect centers induced by mechanical fracturing in amorphous SiO2 , 1991 .

[29]  G. Kuyt,et al.  Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres , 2007, IEEE Transactions on Nuclear Science.

[30]  J. S. Hayden,et al.  Fluorescence Spectroscopy of Color Centers Generated in Phosphate Glasses after Exposure to Femtosecond Laser Pulses , 2004 .

[31]  David L. Griscom,et al.  Radiation hardening of pure-silica-core optical fibers: Reduction of induced absorption bands associated with self-trapped holes , 1997 .

[32]  H. Henschel,et al.  Influence Of Preform And Draw Conditions On Uv Transmission And Transient Radiation Sensitivity Of An Optical Fiber , 1990, Other Conferences.

[33]  L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .

[34]  A. L. Tomashuk,et al.  Nitrogen doped silica core fibres: a new type of radiation-resistant fibre , 1995 .

[35]  F. Berghmans,et al.  Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers , 2007, IEEE Transactions on Nuclear Science.

[36]  Monica K. Davis,et al.  Rate Equations for Clusters in Rare Earth-Doped Fibers , 1994 .

[37]  Y. Hibino,et al.  Drawing condition dependence of radiation-induced loss in optical fibres , 1986 .

[38]  Tomonori Kashiwada,et al.  gamma -ray irradiation durability of erbium-doped fibres , 1994 .

[39]  D. Payne,et al.  Fabrication of low-loss optical fibres containing rare-earth ions , 1985 .

[40]  A. Stoneham Theory of defects in solids , 1979 .

[41]  E. W. Blackmore,et al.  Operation of the TRIUMF (20-500 MeV) proton irradiation facility , 2000, 2000 IEEE Radiation Effects Data Workshop. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.00TH8527).

[42]  S. Kannan,et al.  Analysis of recovery in radiation-induced loss in rare-earth-doped fibers through master curve/demarcation energy diagrams , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[43]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[44]  Makoto Fujimaki,et al.  Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO 2 optical-fiber gratings , 1998 .

[45]  David L. Griscom,et al.  Radiation hardening of pure-silica-core optical fibers by ultra-high-dose /spl gamma/-ray pre-irradiation , 1995, Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems.

[47]  Y. Sasajima,et al.  Optical transitions of self-trapped holes in amorphousSiO2 , 2003 .

[48]  Warren F. Woodward,et al.  Proton-induced degradation in interferometric fiber optic gyroscopes , 1995, Defense, Security, and Sensing.

[49]  E. Friebele,et al.  Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements , 1997, RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294).

[50]  W. Kawakami,et al.  Dose rate effect on radiation induced attenuation of pure silica core optical fibres , 1989 .

[51]  Michel Sotom,et al.  Extrapolation of radiation-induced EDFA gain degradation at space dose rate , 2005 .

[52]  Linards Skuja,et al.  Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study , 1992 .

[53]  E. Friebele,et al.  Compositional effects on the radiation response of Ge-doped silica-core optical fiber waveguides. , 1980, Applied optics.

[54]  K. Nagasawa,et al.  Correlation between the green photoluminescence band and the peroxy radical in γ-irradiated silica glass , 2000 .

[55]  Sylvain Girard,et al.  Analyse de la réponse des fibres optiques soumises à divers environnements radiatifs , 2003 .

[56]  Influence of Al ion on photochemical conversion in germania–silica sol–gel glass , 1999 .

[57]  S. Girard,et al.  Radial distribution of attenuation in gamma-irradiated single-mode optical fibers , 2003 .

[58]  H. Thienpont,et al.  Radial distribution of proton-induced effects in erbium-doped optical fibers: micro-luminescence study , 2007, 2007 9th European Conference on Radiation and Its Effects on Components and Systems.

[59]  H. Hosono,et al.  Bleaching of peroxy radical in SiO2 glass with 5 eV light , 1990 .

[60]  David L. Griscom,et al.  Optical Properties and Structure of Defects in Silica Glass , 1991 .

[61]  H. Henschel,et al.  Radiation-induced loss of rare earth doped silica fibres , 1997 .

[62]  Nakamura,et al.  Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-purity silicas. , 1990, Physical review. B, Condensed matter.

[63]  David L. Griscom,et al.  Nature Of Defects And Defect Generation In Optical Glasses , 1985, Other Conferences.

[64]  Martin A. Putnam,et al.  Space radiation effects on erbium-doped fibers , 1996, Optics & Photonics.

[65]  Dietrich Marcuse,et al.  Principles of Optical Fiber Measurements , 1981 .

[66]  David L. Griscom,et al.  Defect structure of glasses: Some outstanding questions in regard to vitreous silica , 1985 .

[67]  Thomas R Huser,et al.  Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses , 2003 .

[68]  Martin A. Putnam,et al.  Radiation effects in erbium-doped optical fibres , 1992 .

[69]  H. Henschel,et al.  High radiation hardness of a hollow core photonic bandgap fiber , 2005, 2005 8th European Conference on Radiation and Its Effects on Components and Systems.

[70]  D. Åberg,et al.  Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation. , 2007, Optics letters.

[71]  L. S. Kornienko,et al.  Spectroscopic Manifestations of Self-Trapped Holes in Silica Theory and Experiment , 1989 .

[72]  Ryoichi Tohmon,et al.  Various types of nonbridging oxygen hole center in high-purity silica glass , 1990 .

[73]  Michael J. Hayduk,et al.  Gamma-ray induced responses in an erbium doped fiber laser , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[74]  F Sidiroglou,et al.  Micro-characterisation of erbium-doped fibers using a Raman confocal microscope. , 2005, Optics express.

[75]  Luca Vincetti,et al.  Amplification properties of Er/sup 3+/-doped photonic crystal fibers , 2003 .

[76]  E. Desurvire,et al.  Erbium‐Doped Fiber Amplifiers: Principles and Applications , 1995 .

[77]  Youcef Ouerdane,et al.  Transient radiation responses of silica-based optical fibers: Influence of modified chemical-vapor deposition process parameters , 2006 .

[78]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[79]  T. Kamiya,et al.  Electronic structure of oxygen dangling bond in glassy SiO2: the role of hyperconjugation. , 2003, Physical review letters.

[80]  J. Shelby Reaction of hydrogen with hydroxyl‐free vitreous silica , 1980 .

[81]  E. J. Friebele,et al.  Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers , 1994 .