Fungal formation of selenium and tellurium nanoparticles

[1]  J. Parnell,et al.  Selenium and Other Trace Element Mobility in Waste Products and Weathered Sediments at Parys Mountain Copper Mine, Anglesey, UK , 2017 .

[2]  P. Lens,et al.  Biomineralization of tellurium and selenium-tellurium nanoparticles by the white-rot fungus Phanerochaete chrysosporium , 2017, Bioreduction of selenite and tellurite by Phanerochaete chrysosporium.

[3]  G. Gadd,et al.  Metal and metalloid biorecovery using fungi , 2017, Microbial biotechnology.

[4]  J. Ramanujam,et al.  Copper indium gallium selenide based solar cells – a review , 2017 .

[5]  H. S. Shetty,et al.  Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet , 2017, Scientific Reports.

[6]  P. Lens,et al.  Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. , 2017, Journal of hazardous materials.

[7]  R. Turner,et al.  Antimicrobial activity of biogenically produced spherical Se‐nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite‐coated surfaces , 2017, Microbial biotechnology.

[8]  F. Gu,et al.  Emerging nanomaterials for the application of selenium removal for wastewater treatment , 2016 .

[9]  P. Lens,et al.  Selenium: environmental significance, pollution, and biological treatment technologies. , 2016, Biotechnology advances.

[10]  Tianfeng Chen,et al.  Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents. , 2016, Chemistry, an Asian journal.

[11]  P. Lens,et al.  Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets , 2016, Environmental Science and Pollution Research.

[12]  P. Melotti,et al.  Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts , 2016, Microbial biotechnology.

[13]  T. Smith,et al.  Microbial Transformations of Selenium Species of Relevance to Bioremediation , 2016, Applied and Environmental Microbiology.

[14]  B. Peyton,et al.  Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. , 2016, Bioresource technology.

[15]  M. Brucale,et al.  Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. , 2016, Journal of hazardous materials.

[16]  F. Ren,et al.  Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. , 2015, Carbohydrate polymers.

[17]  P. Lens,et al.  Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor , 2015, Bioreduction of selenite and tellurite by Phanerochaete chrysosporium.

[18]  S. Foster,et al.  Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. , 2015, Metallomics : integrated biometal science.

[19]  P. Lens,et al.  Microbial synthesis of chalcogenide semiconductor nanoparticles: a review , 2015, Microbial biotechnology.

[20]  R. Turner,et al.  Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms , 2015, Front. Microbiol..

[21]  E. Sholkamy,et al.  Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1 , 2015, International journal of nanomedicine.

[22]  H. Forootanfar,et al.  Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods. , 2015, Materials science & engineering. C, Materials for biological applications.

[23]  P. Lens,et al.  Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium , 2015, Applied Microbiology and Biotechnology.

[24]  P. Lens,et al.  Ecology and Biotechnology of Selenium-Respiring Bacteria , 2015, Microbiology and Molecular Reviews.

[25]  François Farges,et al.  Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. , 2015, Environmental science & technology.

[26]  Nor Azah Yusof,et al.  Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of trichoderma harzianum gene , 2014 .

[27]  J. Kumar,et al.  Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia , 2014 .

[28]  M. Rai,et al.  Green synthesis of silver nanoparticles by Phoma glomerata. , 2014, Micron.

[29]  W. Hunter Pseudomonas seleniipraecipitans Proteins Potentially Involved in Selenite Reduction , 2014, Current Microbiology.

[30]  W. Hunter A Rhizobium selenitireducens Protein Showing Selenite Reductase Activity , 2014, Current Microbiology.

[31]  Hanqing Yu,et al.  Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm , 2014, Scientific Reports.

[32]  E. Vetchinkina,et al.  Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium , 2013, Journal of Microbiology.

[33]  S. Dwivedi,et al.  Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay , 2013, PloS one.

[34]  H. Hur,et al.  Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. , 2012, Bioresource technology.

[35]  M. Faramarzi,et al.  Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities , 2012 .

[36]  J. Winter,et al.  Formation of Se (0) Nanoparticles by Duganella sp. andAgrobacterium sp. isolated from Se-laden soil of North-East Punjab, India , 2012, Microbial Cell Factories.

[37]  Saswati Saha,et al.  Production of Selenium Nanorods by Phytopathogen, Alternaria Alternata , 2012 .

[38]  P. Tran,et al.  Selenium nanoparticles inhibit Staphylococcus aureus growth , 2011, International journal of nanomedicine.

[39]  K. Singh,et al.  An Organic Acid-induced Synthesis and Characterization of Selenium Nanoparticles , 2011 .

[40]  Thomas E Hanson,et al.  Aeration Controls the Reduction and Methylation of Tellurium by the Aerobic, Tellurite-Resistant Marine Yeast Rhodotorula mucilaginosa , 2011, Applied and Environmental Microbiology.

[41]  R. Bernier-Latmani,et al.  Role of proteins in controlling selenium nanoparticle size , 2011, Nanotechnology.

[42]  C. A. A. D. Silva,et al.  Role of the Morphology and Polyphosphate in Trichoderma harzianum Related to Cadmium Removal , 2011 .

[43]  A. E. do Nascimento,et al.  Role of the Morphology and Polyphosphate in Trichoderma harzianum Related to Cadmium Removal , 2011, Molecules.

[44]  A. Blomberg,et al.  Sulfate Assimilation Mediates Tellurite Reduction and Toxicity in Saccharomyces cerevisiae , 2010, Eukaryotic Cell.

[45]  S. Cameotra,et al.  Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil , 2010, Microbial cell factories.

[46]  J. Lloyd,et al.  Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential , 2009, Biotechnology Letters.

[47]  D. Manter,et al.  Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5 , 2009, Current Microbiology.

[48]  A. Ingle,et al.  Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus , 2009, Letters in applied microbiology.

[49]  E. V. van Hullebusch,et al.  Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. , 2008, Colloids and surfaces. B, Biointerfaces.

[50]  B. Okeke,et al.  Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source. , 2008, Bioresource technology.

[51]  L. Kuykendall,et al.  Reduction of Selenite to Elemental Red Selenium by Rhizobium sp. Strain B1 , 2007, Current Microbiology.

[52]  Hanqing Yu,et al.  Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. , 2007, Free radical biology & medicine.

[53]  K. Peng,et al.  Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. , 2007, Journal of biochemical and biophysical methods.

[54]  S. Curran,et al.  Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors , 2007, Applied and Environmental Microbiology.

[55]  R. Graham,et al.  How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food , 2007, Microbial ecology in health and disease.

[56]  P. Lens,et al.  Bioconversion of selenate in methanogenic anaerobic granular sludge. , 2006, Journal of environmental quality.

[57]  C. Tsai,et al.  Purification and Characterization , 2006 .

[58]  J. Chung,et al.  Bioreduction of selenate using a hydrogen-based membrane biofilm reactor. , 2006, Environmental science & technology.

[59]  G. Gadd,et al.  The kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vacuolization response to high concentrations. , 2004, Mycological research.

[60]  Hongyuan Chen,et al.  Synthesis of selenium nanoparticles in the presence of polysaccharides , 2004 .

[61]  Geoffrey M. Gadd,et al.  Linked Redox Precipitation of Sulfur and Selenium under Anaerobic Conditions by Sulfate-Reducing Bacterial Biofilms , 2003, Applied and Environmental Microbiology.

[62]  R. Oremland,et al.  The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. , 2003, FEMS microbiology letters.

[63]  P. Ajayan,et al.  Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria , 2003, Applied and Environmental Microbiology.

[64]  S. Tsuneda,et al.  Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. , 2003, FEMS microbiology letters.

[65]  G. Gadd,et al.  Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization , 1999 .

[66]  R. Oremland,et al.  Microbial oxidation of elemental selenium in soil slurries and bacterial cultures , 1998 .

[67]  P. Mateos,et al.  Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens , 1997, Applied and environmental microbiology.

[68]  J. M. Brady,et al.  Volatilization of selenite in aqueous medium by a Penicillium species , 1996 .

[69]  G. Gadd,et al.  Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: Cellular location of reduced selenium and implications for tolerance , 1995, Journal of Industrial Microbiology.

[70]  P. Visscher,et al.  Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3 , 1994, Applied and environmental microbiology.

[71]  J. Macy,et al.  The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium , 1993, Archives of Microbiology.

[72]  G. Gadd Microbial formation and transformation of organometallic and organometalloid compounds , 1993 .

[73]  R. Oremland,et al.  Selenate Reduction to Elemental Selenium by Anaerobic Bacteria in Sediments and Culture: Biogeochemical Significance of a Novel, Sulfate-Independent Respiration , 1989, Applied and environmental microbiology.

[74]  R. Oremland,et al.  Reduction of Selenate to Selenide by Sulfate-Respiring Bacteria: Experiments with Cell Suspensions and Estuarine Sediments , 1987 .

[75]  G. Harrison,et al.  Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum , 1984, Archives of Microbiology.

[76]  G. Gadd,et al.  Cadmium Uptake by Aureobasidium pullulans , 1984 .

[77]  F. Habashi,et al.  Oxidation of copper (II) selenide by Thiobacillus ferrooxidans. , 1972, Canadian journal of microbiology.

[78]  P. Lens,et al.  Fungal pelleted reactors in wastewater treatment: Applications and perspectives , 2016 .

[79]  R. Oremland,et al.  Nanoparticles Formed from Microbial Oxyanion Reduction of Toxic Group 15 and Group 16 Metalloids , 2011 .

[80]  Priyabrata Mukherjee,et al.  The use of microorganisms for the formation of metal nanoparticles and their application , 2005, Applied Microbiology and Biotechnology.

[81]  Thomas G Chasteen,et al.  Biomethylation of selenium and tellurium: microorganisms and plants. , 2003, Chemical reviews.

[82]  Y. Bao,et al.  Biological effects of a nano red elemental selenium , 2001, BioFactors.

[83]  M. Ike,et al.  Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. , 2000, Journal of bioscience and bioengineering.

[84]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .