Elliptic solutions of the defocusing NLS equation are stable

The stability of the stationary periodic solutions of the integrable (one-dimensional, cubic) defocusing nonlinear Schrodinger (NLS) equation is reasonably well understood, especially for solutions of small amplitude. In this paper, we exploit the integrability of the NLS equation to establish the spectral stability of all such stationary solutions, this time by explicitly computing the spectrum and the corresponding eigenfunctions associated with their linear stability problem. An additional argument using an appropriate Krein signature allows us to conclude the (nonlinear) orbital stability of all stationary solutions of the defocusing NLS equation with respect to so-called subharmonic perturbations: perturbations that have period equal to an integer multiple of the period of the amplitude of the solution. All results presented here are independent of the size of the amplitude of the solutions and apply equally to solutions with trivial and nontrivial phase profiles.

[1]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[2]  G. Rowlands On the Stability of Solutions of the Non-linear Schrödinger Equation , 1974 .

[3]  C. Liu,et al.  Self‐modulation of ion Bernstein waves , 1980 .

[4]  Tosio Kato Perturbation theory for linear operators , 1966 .

[5]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[6]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[7]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[8]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[9]  Todd Kapitula,et al.  On the spectra of periodic waves for infinite-dimensional Hamiltonian systems , 2008 .

[10]  Bernard Deconinck,et al.  Computing spectra of linear operators using the Floquet-Fourier-Hill method , 2006, J. Comput. Phys..

[11]  Bernard Deconinck,et al.  KdV cnoidal waves are spectrally stable , 2009 .

[12]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[13]  D. J. Benney,et al.  The Propagation of Nonlinear Wave Envelopes , 1967 .

[14]  R. Sachs Completeness of Derivatives of Squared Schroedinger Eigenfunctions and Explicit Solutions of the Linearized KdV Equation. , 1983 .

[15]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[16]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[17]  T. Bartsch,et al.  Bound states for a coupled Schrödinger system , 2007 .

[18]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[19]  Instabilities in the two-dimensional cubic nonlinear Schrödinger equation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[21]  H. Pécseli Solitons and Weakly Nonlinear Waves in Plasmas , 1985, IEEE Transactions on Plasma Science.

[22]  Bernard Deconinck,et al.  Spectral Stability of Stationary Solutions of a Boussinesq System Describing Long Waves in Dispersive Media , 2010, SIAM J. Appl. Dyn. Syst..

[23]  Stationary solutions of the one-dimensional nonlinear Schrodinger equation: II. Case of attractive nonlinearity , 1999, cond-mat/9911177.

[24]  M. Haragus,et al.  Stability of small periodic waves for the nonlinear Schrödinger equation , 2006, math/0609026.

[25]  J. Bronski,et al.  Modulational instability for nonlinear Schrödinger equations with a periodic potential , 2005, nlin/0504052.

[26]  Paul F. Byrd,et al.  Handbook of elliptic integrals for engineers and scientists , 1971 .

[27]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[28]  Vladimir S. Gerdjikov,et al.  Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation , 1986 .

[29]  J. Maddocks,et al.  On the stability of KdV multi‐solitons , 1993 .

[30]  S. Lafortune,et al.  Spectral stability analysis for periodic traveling wave solutions of NLS and CGL perturbations , 2008 .

[31]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[32]  Yuri S. Kivshar,et al.  Self-focusing and transverse instabilities of solitary waves , 2000 .

[33]  Bernard Deconinck,et al.  Transverse instabilities of deep-water solitary waves , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Thomas,et al.  NOTE ON GROUND STATES OF NONLINEAR SCHRODINGER SYSTEMS , 2006 .

[35]  P. Saffman,et al.  Stability of plane wave solutions of the two-space-dimensional nonlinear Schrödinger equation , 1980 .

[36]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[37]  Alexander M. Rubenchik,et al.  Soliton stability in plasmas and hydrodynamics , 1986 .

[38]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[39]  Bernard Deconinck,et al.  On the orbital ( in ) stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations , 2009 .

[40]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[41]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[42]  J C Bronski,et al.  Stability of repulsive Bose-Einstein condensates in a periodic potential. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  H. Amann,et al.  Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .

[44]  J. Rothenberg,et al.  Observation of the buildup of modulational instability from wave breaking. , 1991, Optics letters.

[45]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[46]  Nghiem V. Nguyen On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system , 2011 .

[47]  Jean Bourgain,et al.  Global Solutions of Nonlinear Schrodinger Equations , 1999 .

[48]  Stability of solitary waves for coupled nonlinear Schro¨dinger equations , 1996 .

[49]  R. Gardner,et al.  Spectral analysis of long wavelength periodic waves and applications. , 1997 .

[50]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[51]  S. V. Manakov On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 1973 .

[52]  Bernard Deconinck,et al.  Periodic finite-genus solutions of the KdV equation are orbitally stable , 2010 .

[53]  D. Frantzeskakis,et al.  Statics and dynamics of atomic dark-bright solitons in the presence of impurities , 2011, 1111.2270.

[54]  Thierry Gallay,et al.  Orbital stability of periodic waves for the nonlinear Schrödinger equation , 2007 .

[55]  Rothenberg,et al.  Modulational instability for normal dispersion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[56]  J. Carter,et al.  Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrodinger equation , 2006 .

[57]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[58]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[59]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[60]  Kevin Zumbrun,et al.  Convergence of Hill's Method for Nonselfadjoint Operators , 2010, SIAM J. Numer. Anal..

[61]  Nghiem V. Nguyen,et al.  Orbital stability of solitary waves for a nonlinear Schrödinger system , 2011, Advances in Differential Equations.

[62]  Bernard Deconinck,et al.  SpectrUW: A laboratory for the numerical exploration of spectra of linear operators , 2007, Math. Comput. Simul..

[63]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .