Direct Estimation of Genetic Principal Components

Estimating the genetic and environmental variances for multivariate and function-valued phenotypes poses problems for estimation and interpretation. Even when the phenotype of interest has a large number of dimensions, most variation is typically associated with a small number of principal components (eigen-vectors or eigenfunctions). We propose an approach that directly estimates these leading principal components; these then give estimates for the covariance matrices (or functions). Direct estimation of the principal components reduces the number of parameters to be estimated, uses the data efficiently, and provides the basis for new estimation algorithms. We develop these concepts for both multivariate and function-valued phenotypes and illustrate their application in the restricted maximum-likelihood framework.

[1]  W. G. Hill,et al.  Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. , 1994, Genetical research.

[2]  K. Meyer Estimating covariance functions for longitudinal data using a random regression model , 1998, Genetics Selection Evolution.

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[5]  S. Brotherstone,et al.  Genetic and environmental smoothing of lactation curves with cubic splines. , 1999, Journal of dairy science.

[6]  Douglas M. Bates,et al.  Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..

[7]  K. Meyer Maximum likelihood estimation of variance components for a multivariate mixed model with equal design matrices. , 1985, Biometrics.

[8]  B. Flury Common Principal Components and Related Multivariate Models , 1988 .

[9]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[10]  T. Meuwissen,et al.  Strategies for estimating the parameters needed for different test-day models. , 2000, Journal of dairy science.

[11]  W. G. Hill,et al.  Effect of sampling errors on efficiency of selection indices. 2. Use of information on associated traits for improvement of a single important trait , 1976 .

[12]  W. G. Hill,et al.  Probabilities of Non-Positive Definite between-Group or Genetic Covariance Matrices , 1978 .

[13]  S. Pletcher,et al.  Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. , 2000, Genetics.

[14]  Frederick R Adler,et al.  Genetic basis for systems of skeletal quantitative traits: Principal component analysis of the canid skeleton , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. G. Hill,et al.  Modification of Estimates of Parameters in the Construction of Genetic Selection Indices ('Bending') , 1981 .

[16]  M. Kirkpatrick,et al.  Artificial selection on phenotypically plastic traits. , 1999, Genetical research.

[17]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[18]  Richard Gomulkiewicz,et al.  Variation, selection and evolution of function-valued traits , 2004, Genetica.

[19]  Karin Meyer,et al.  Estimating genetic covariance functions assuming a parametric correlation structure for environmental effects , 2001, Genetics Selection Evolution.

[20]  P. Phillips,et al.  Comparative quantitative genetics : evolution of the G matrix , 2002 .

[21]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[22]  C. Geyer,et al.  The genetic analysis of age-dependent traits: modeling the character process. , 1999, Genetics.

[23]  Richard Gomulkiewicz,et al.  The Selection Gradient of an Infinite-Dimensional Trait , 1996, SIAM J. Appl. Math..

[24]  M. Kirkpatrick,et al.  A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters , 1989, Journal of mathematical biology.

[25]  A. Rachman Computation of rotational energy levels of rigid asymmetric top molecules , 1965, Comput. J..

[26]  Bernhard Flury,et al.  Principal component analysis , 1988 .

[27]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[28]  Florence Jaffrézic,et al.  Structured antedependence models for genetic analysis of repeated measures on multiple quantitative traits. , 2003, Genetical research.

[29]  M. Kirkpatrick,et al.  Analysis of the inheritance, selection and evolution of growth trajectories. , 1990, Genetics.

[30]  Joe C. Campbell,et al.  Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution , 1985, The Quarterly Review of Biology.

[31]  R. Pearl Biometrics , 1914, The American Naturalist.

[32]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[33]  W. Atchley,et al.  A genetic analysis of targeted growth in mice. , 1984, Genetics.

[34]  K. Meyer,et al.  Estimating variances and covariances for multivariate animal models by restricted maximum likelihood , 1991, Genetics Selection Evolution.

[35]  L. R. Schaeffer,et al.  Application of random regression models in animal breeding , 2004 .

[36]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[37]  W. G. Hill,et al.  Effect of sampling errors on efficiency of selection indices 1. Use of information from relatives for single trait improvement , 1976 .

[38]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[39]  Paul Galpern,et al.  INTERPRETATION OF THE RESULTS OF COMMON PRINCIPAL COMPONENTS ANALYSES , 2002, Evolution; international journal of organic evolution.

[40]  A. W. F. Edwards,et al.  Statistical Inference. (Book Reviews: Likelihood. An Account of the Statistical Concept of Likelihood and Its Application to Scientific Inference) , 1973 .

[41]  M. Kirkpatrick,et al.  Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices , 2005, Genetics Selection Evolution.

[42]  M. Kirkpatrick The Evolution of Size and Growth in Harvested Natural Populations , 1993 .

[43]  W. G. Hill,et al.  Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood , 1997 .